android
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、人类感知决策与交互技术:现状与挑战
本文综述了人类感知决策与交互技术的研究现状与未来挑战,涵盖对话系统中的问题解释机制、可解释性度量(如可解释性、可读性和可预测性)以及模型协调在多智能体和决策支持系统中的应用。文章分析了RADAR、MA-RADAR、RADAR-X和FRESCO等典型系统的实现方式,并探讨了在符号中间层构建、信任建模、人类模型学习及超级人类AI安全等方面的前沿挑战。通过系统化的应对策略和流程设计,推动人机交互向更智能、安全和高效的方向发展。原创 2025-09-28 07:01:39 · 51 阅读 · 0 评论 -
18、人机协作中的欺骗行为与应用解读
本文探讨了人机协作中的欺骗行为及其在决策支持与模型转录场景中的应用。分析了机器人通过信念塑造和善意谎言影响人类队友的机制,以及说谎的计算模型与潜在风险。重点介绍了RADAR系列系统(包括MA-RADAR和RADAR-X)在多用户协作、解释性对话和迭代规划中的功能,以及D3WA+工具在对话模型转录与调试中的作用。最后总结了各系统的特性,并展望了未来在信任建模、智能算法和用户界面优化方面的发展方向。原创 2025-09-27 10:31:17 · 34 阅读 · 0 评论 -
17、机器人的混淆、欺骗与谎言策略
本文探讨了机器人在多观察者环境中应对信息泄露风险的三大策略:混淆、欺骗与谎言。通过引入混合观察者可控可观察性规划问题(MO-COPP),机器人能够在实现自身目标的同时,向合作观察者传递清晰意图,同时对敌对观察者隐藏真实目标。文章详细阐述了MO-COPP的建模、信念更新机制及解决方案,包括整数规划和启发式搜索算法,并比较了各自的优劣。此外,还分析了谎言策略在提升团队效用中的潜在应用及其带来的信任与道德挑战,最后总结了各类策略的适用场景与未来研究方向。原创 2025-09-26 11:22:23 · 33 阅读 · 0 评论 -
16、机器人在对抗环境中的行为与通信策略
本文探讨了机器人在对抗环境中的行为与通信策略,重点分析了目标混淆和计划混淆两种信息隐藏方法。通过k-模糊计划和ℓ-多样化计划,机器人可在对手存在时保护敏感信息。文章还介绍了安全的目标混淆机制、混合环境中对合作与对抗观察者的平衡策略,以及基于通信的欺骗技术如信息过滤与虚假信息传递。最后讨论了相关伦理问题并展望未来研究方向,为机器人在复杂环境下的智能决策与安全交互提供了理论支持和技术路径。原创 2025-09-25 15:00:11 · 30 阅读 · 0 评论 -
15、查询特定模型获取与解释相关技术解析
本文探讨了在模型规划与决策中解释替代计划无效性与次优性的关键技术,涵盖基于样本的试验方法识别失败原因、抽象成本函数构建、解释置信度计算及处理概念映射中的不确定性。同时介绍了系统如何通过查询用户获取缺失概念,并分析了该技术在机器人决策和游戏智能体中的应用场景。文章还指出了当前方法在概念完整性、采样预算和噪声分类器方面的局限性,并展望了自动概念发现、优化采样策略和改进不确定性处理等未来发展方向。原创 2025-09-24 09:18:06 · 24 阅读 · 0 评论 -
14、机器人模型解释与词汇不匹配问题探讨
本文探讨了机器人模型解释中的核心挑战——词汇不匹配问题,分析了在缺乏人机共享词汇的情况下如何生成可理解的模型解释。文章回顾了平衡规划与可解释性研究,提出了将机器人原始模型映射到人类可理解的STRIPS表示的方法,并深入讨论了局部近似、基于分类器的模型学习以及查询特定的模型获取等关键技术。通过《蒙特祖玛的复仇》游戏案例,展示了多种方法的综合应用流程。同时,文章总结了不同方法的优势与适用场景,提出了应对概念不完整、分类器噪声和大动作空间等挑战的策略,并展望了多模态融合、主动学习和跨领域迁移等未来发展方向,旨在提原创 2025-09-23 12:51:58 · 23 阅读 · 0 评论 -
13、通信与行为平衡:优化机器人规划策略
本文探讨了在机器人规划中实现通信与行为平衡的策略,重点分析了完全可解释规划与完全可解释的最优规划两类方法,并介绍了通过改进模型空间搜索和转换为单一规划问题生成平衡规划的技术路径。文章进一步阐述了如何将自我解释规划编译为经典规划形式,并讨论了交互过程中的认知副作用。此外,还扩展了可读性和可预测性等行为度量下的优化目标,提出了分层规划、动态调整和综合评估等综合应用策略。最后展望了该方法在医疗、教育等领域的未来发展趋势,强调多模态通信与自适应规划的重要性。原创 2025-09-22 14:45:21 · 24 阅读 · 0 评论 -
12、机器人行为解释与沟通平衡策略
本文探讨了在人机协作场景中,如何通过获取人类心理模型和优化沟通策略来提升机器人行为的可解释性、可读性和可预测性。文章介绍了近似解法、无模型解释与原型模型假设等心理模型获取方法,并提出平衡计划的概念,综合考虑计划成本、沟通成本与不可解释性惩罚,以实现行为与解释的最佳权衡。同时,分析了沟通策略对提升行为理解度的影响,并给出了综合沟通的操作流程。最后展望了未来在人类模型学习、多模态沟通与自适应策略方面的研究方向。原创 2025-09-21 10:23:41 · 31 阅读 · 0 评论 -
11、解释生成中的模型调和与心智模型获取
本文探讨了在人机交互中通过模型调和生成解释的方法,重点分析了在机器人对人类心智模型存在不确定性的情况下如何生成有效解释。文章介绍了带注释模型的形式化表示,提出了一致解释与条件解释两种策略,并结合改进的AO*搜索算法优化解释过程。以城市搜索与侦察(USAR)为例,展示了模型差异对协作的影响及解决路径。最后总结了核心方法、应用场景及未来研究方向,包括算法效率优化、多模态解释和伦理信任问题,为实现高效人机协同提供了理论基础与实践框架。原创 2025-09-20 09:47:44 · 25 阅读 · 0 评论 -
10、模型调和视角下的解释方法探索
本文探讨了模型调和视角下的多种计划解释方法,重点分析了最小完全解释(MCE)和最小单调解释(MME)的模型空间搜索算法,提出了基于用户期望的显式对比解释与可计算性更强的近似MCE方法。通过用户研究验证了解释的有效性与可理解性,并与其他解释方法如推理不对称解决策略和计划总结进行了对比。文章还给出了不同方法的应用流程、关键技术点及未来研究方向,为可解释性AI中的规划解释提供了系统性框架。原创 2025-09-19 13:24:25 · 22 阅读 · 0 评论 -
9、机器人行为解释:模型调和视角
本文探讨了基于模型调和的机器人行为解释方法,分析了可预测性与规划可读性的区别,提出了通过调和机器人真实模型与人类心理模型之间差异来提升行为可解释性的框架。文章定义了模型调和问题及其解决方案,并深入比较了四种主要解释类型:计划补丁解释(PPE)、模型补丁解释(MPE)、最小完整解释(MCE)和最小单调解释(MME),从完整性、简洁性、单调性和可计算性等维度评估其优劣。结合社会科学中的对比性、社会性和选择性属性,讨论了解释的有效性,并给出了在不同实际应用场景下选择合适解释类型的决策依据。最后展望了未来在算法优化原创 2025-09-18 16:19:17 · 24 阅读 · 0 评论 -
8、机器人可解释行为之可读性研究
本文探讨了机器人在人机协作中通过可读性实现隐式意图传达的关键机制。基于可控可观测性规划问题(COPP)框架,研究了目标可读性与计划可读性两种核心问题,提出通过信念空间建模与优化搜索算法帮助人类观察者推断机器人目标或执行路径。文章分析了其在工业制造、医疗护理和服务行业等场景的应用价值,并展望了多模态融合、自适应策略及情感交互等未来发展趋势,旨在提升人机协作的效率与信任度。原创 2025-09-17 11:10:05 · 31 阅读 · 0 评论 -
7、可解释行为生成中的环境设计
本文探讨了在共享环境中通过环境设计提升机器人行为可解释性的方法。文章系统地介绍了问题设定、可解释性设计框架(包括单个与多个可解释问题及纵向影响分析)、最优设计方案的搜索策略,并通过具体案例演示了不同任务设置下的设计选择效果。研究表明,在考虑环境修改成本、不可解释性成本和计划成本的前提下,合理的设计能显著提升机器人行为的可解释性,尤其在长期重复任务中更具优势。该方法适用于家庭服务、医疗护理、物流配送等多个领域,尽管面临计算复杂度和成本衡量等挑战,未来结合优化算法与多技术融合将推动其进一步发展。原创 2025-09-16 11:06:10 · 40 阅读 · 0 评论 -
6、机器人可解释行为生成策略解析
本文系统解析了机器人可解释行为生成的多种策略,涵盖基于模型与无模型的规划方法。基于模型的方法利用人类心理模型和距离函数(如动作距离、因果链距离、状态序列距离)结合调和搜索算法生成可解释计划;无模型方法则通过学习人类标注的动作标签,使用序列到序列模型预测可解释性,并指导计划选择或合成。文章还探讨了环境设计在提升可解释性中的作用,提出环境改造与行为生成协同优化的框架。通过可解释性特征向量与回归模型的学习,实现对人类可解释性评估的拟合,最终在多样化场景中提升机器人行为的透明度与人类接受度。原创 2025-09-15 09:38:14 · 29 阅读 · 0 评论 -
5、可解释性规划与可解释行为生成
本文探讨了可解释性规划与可解释行为生成的核心概念与方法,涵盖模型信息传达、操作模式差异、任务与运动规划的挑战以及人类计算能力的建模。通过定义可解释性度量和通用人类感知规划问题(G-HAP),提出统一框架来生成可解释行为。文章分析了直接访问与学习近似人类心理模型的两种路径,并强调环境设计在提升行为可行性中的作用。结合家庭服务机器人与工业生产场景的应用实例,展示了可解释性技术在实际人机协作中的价值,最后展望了有限理性模型、多模态融合与跨领域拓展等未来方向。原创 2025-09-14 16:10:08 · 34 阅读 · 0 评论 -
4、可解释性度量:让机器人行为更易理解
本文探讨了机器人行为的可解释性度量,包括可解释性、可读性和可预测性三个核心概念,并基于目标导向的STRIPS规划模型进行形式化定义。文章介绍了不完整模型与传感器模型对可解释性的影响,分析了人类心理模型在理解机器人行为中的作用。通过示例说明三种度量的区别,并讨论了利用显式与隐式通信提升可解释性的策略。进一步涵盖了工业制造、物流配送和医疗服务等应用场景,提出了基于模型、数据和通信的技术实现方法,以及准确率、召回率和F1值等评估指标。最后总结了当前面临的模型复杂性、数据不足和人类认知差异等挑战及应对方案,展望了可原创 2025-09-13 10:57:37 · 25 阅读 · 0 评论 -
3、可解释人工智能系统的维度与人类感知视角
本文深入探讨了可解释人工智能系统的多个维度,涵盖内部与外部解释的分类、可解释分类与行为的研究领域,并重点分析了人工智能代理如何通过建模人类心理实现更具可解释性的交互。文章介绍了支持可解释行为的智能代理架构,提出了基于心理模型的规划框架,并系统梳理了可解释人工智能的具体研究方向,包括可解释性、可读性、解释生成、模型未知情境应对及对抗性设置等。同时,探讨了其在决策支持和模型辅助中的应用,总结了当前面临的挑战,并展望了未来跨学科融合与技术突破的方向。原创 2025-09-12 11:22:18 · 35 阅读 · 0 评论 -
2、可解释人工智能系统:从人类交互中汲取的见解
本文探讨了可解释人工智能系统的设计理念,强调从人类交互中汲取洞察的重要性。文章分析了人类对解释的需求场景与方式,指出AI系统在不同角色(如调试者、观察者、协作者)下需提供定制化解释,并讨论了长期交互中信任对降低解释需求的影响。同时,提出了满足可理解性、定制化、可交流性、合理性与满意度等解释要求的具体策略,并展望了多模态、实时、自适应解释等未来发展趋势,旨在推动人机之间的自然、透明与高效协作。原创 2025-09-11 09:58:00 · 29 阅读 · 0 评论 -
1、可解释的人机交互:规划视角下的探索
本文探讨了在人工智能与人类协同工作的背景下,实现可解释人机交互的关键因素。从人类对解释的需求出发,分析了可解释性的核心维度,包括可解释性、可读性和可预测性,并深入讨论了基于模型与无模型的规划方法、心理模型的获取与不确定性处理、解释生成机制以及通信与行为的平衡策略。文章还涵盖了词汇不匹配、混淆行为与欺骗性通信等复杂问题,并介绍了在协作决策、多智能体参与系统(如RADAR系列)和模型转录助手(如D3WA+)中的实际应用。最终强调,构建可解释的人工智能系统需要融合认知建模、规划算法与自然语言交互,以提升人类对AI原创 2025-09-10 15:26:35 · 37 阅读 · 0 评论
分享