吾名爱妃,性好静亦好动。好编程,常沉浸于代码之世界,思维纵横,力求逻辑之严密,算法之精妙。亦爱篮球,驰骋球场,尽享挥洒汗水之乐。且喜跑步,尤钟马拉松,长途奔袭,考验耐力与毅力,每有所进,心甚喜之。
吾以为,编程似布阵,算法如谋略,需精心筹谋,方可成就佳作。篮球乃团队之艺,协作共进,方显力量。跑步与马拉松,乃磨炼身心之途,愈挫愈勇,方能达至远方。愿交志同道合之友,共探此诸般妙趣。诸君,此文尚佳,望点赞收藏,谢之!
开发层面基于LangChain4j框架实现RAG应用:CSDN
流程图中相关组件解释:
Conversation Retrieval QA Chain:
Chat Model: 需要配置一个llm,能够注意要是能够支持Chat的模型。
Vector Store Retriever: 需要配置一个向量数据库,图中使用的是Milvus,注意Milvus需要私有化部署。
Memory:图中样例不涉及记忆功能,所以没有配置。如果需要支持记忆,则需要配置Memory组件。</