Flowise: 对接大模型实现RAG能力

吾名爱妃,性好静亦好动。好编程,常沉浸于代码之世界,思维纵横,力求逻辑之严密,算法之精妙。亦爱篮球,驰骋球场,尽享挥洒汗水之乐。且喜跑步,尤钟马拉松,长途奔袭,考验耐力与毅力,每有所进,心甚喜之。

 
吾以为,编程似布阵,算法如谋略,需精心筹谋,方可成就佳作。篮球乃团队之艺,协作共进,方显力量。跑步与马拉松,乃磨炼身心之途,愈挫愈勇,方能达至远方。愿交志同道合之友,共探此诸般妙趣。

诸君,此文尚佳,望点赞收藏,谢之!

开发层面基于LangChain4j框架实现RAG应用:CSDN 

流程图中相关组件解释:

Conversation Retrieval QA Chain:

Chat Model: 需要配置一个llm,能够注意要是能够支持Chat的模型。

Vector Store Retriever: 需要配置一个向量数据库,图中使用的是Milvus,注意Milvus需要私有化部署。

Memory:图中样例不涉及记忆功能,所以没有配置。如果需要支持记忆,则需要配置Memory组件。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值