损失函数之center loss

A Discriminative Feature Learning Approach for Deep Face Recognition-ECCV2016

概要

对于常见的图像分类问题,我们常常用softmax loss来求损失,最后各个类别学出来的特征分布大概如下图Fig2。这个图是以MNISTt数据集做的实验,一共10个类别,用不同的颜色表示。从Fig2可以看出不管是训练数据集还是测试数据集,都能看出比较清晰的类别界限。
在这里插入图片描述
如果你是采用softmax loss加上本文提出的center loss的损失,那么最后各个类别的特征分布大概如下图Fig3。和Fig2相比,类间距离变大了,类内距离减少了(主要变化在于类内距离:intra-class),这就是直观的结果。
在这里插入图片描述

softmax loss

在这里插入图片描述
wx+b是全连接层的输出,因此log的输入就表示xi属于类别yi的概率。

center loss

在这里插入图片描述
c y i c_{y_i} cyi 表示第 y i y_i yi 个类别的特征中心, x i x_i xi 表示全连接层之前的特征,m表示mini-batch的大小。因此这个公式就是希望一个batch中的每个样本的feature离feature 的中心的距离的平方和要越小越好,也就是类内距离要越小越好。这就是center loss。

关于 L C L_C LC 的梯度和 c y i c_{y_i} cyi 的更新公式如下:
在这里插入图片描述
上面关于 c y i c_{y_i} cyi 的更新的公式中,当 y i y_i yi(表示 y i y_i yi 类别)和 c j c_j cj 的类别 j j j 不一样的时候, c j c_j cj 是不需要更新的,只有当 y i y_i yi j j j 一样才需要更新。

总loss

文中用的损失L的包含softmax loss和center loss,用参数 λ 控制二者的比重,如下式所示。这里的m表示mini-batch的包含的样本数量,n表示类别数。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值