案例分享 | 圆柱锂电池入壳焊后缺陷检测

本文探讨了圆柱锂电池在生产过程中的焊后缺陷检测问题,传统方法难以检测出如爆点、针孔等表面缺陷。昂视通过3D智能视觉处理系统,提供了一种解决方案,利用LP8000系列3D激光轮廓仪和3DCloud软件,实现了高精度的焊后缺陷检测,有效提升产品质量和生产效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动力电池作为新能源汽车的动力核心,其品质直接关系到新能源汽车的性能和安全性,无论是尝鲜还是刚需,消费者在购买决策上都会综合考虑安全性、充电能力和续航等多方面的性能表现,新能源汽车搭载的动力电池首当其冲地成为消费者权衡利弊的关键要素。
 

圆柱电池作为锂电池的一种,外包装采用钢铝材质,由于起步早,工艺成熟,良品率极高,PACK成本较低,是许多车企的优先之选。然而,虽然技术已经相当成熟,生产过程中依旧会不可避免地出现缺陷,留下安全隐患。

那么今天,我们就来聊聊圆柱电池的入壳焊后缺陷检测,详细了解昂视3D智能视觉处理系统在这类缺陷检测中的优异表现吧!


 

行业背景

随着动力电池市场的兴起,以及车企对动力电池各项性能要求极大提高,泄漏问题愈发得到动力电池企业的重视,锂电池行业采用的检漏方式主要有水泡法、气检法、流量法和氦检法等。
 

锂电池生产中段工艺中,卷绕、叠片后会进行入壳焊接,过程中会出现爆点、针孔、凹坑、凸点、偏光、黑点等缺陷,但传统工艺用氦检依旧检不出这些焊后表面缺陷,导致产品在终端出现漏液情况,直接导致客户投诉,为企业带来经济及名誉损失。

针对客户在焊后检测中遇到的难题,在不影响客户原先排产数量的情况下,昂视定制了科学的视觉检测方案,提高产品良率,为客户降本增效。

 

应用描述

### 锂电池外观缺陷检测方法、技术和设备 #### 方法和技术概述 锂电池外观缺陷检测主要依赖于先进的机器视觉技术。该技术利用高分辨率工业相机捕捉图像,并将其传输至专门设计的图像处理系统,从而将光学信号转换为数字信号[^2]。随后,图像处理软件运用多种复杂算法分析这些数据,识别并分类各种类型的表面瑕疵。 #### 主要检测项目 对于具体缺陷项目的判断涵盖了多个方面: - **字符移印质量**:评估是否有断字现象以及边缘是否平滑无毛刺;还需确认文字位置有无明显偏离标准范围的情况发生。 - **物理形态异常**:测量产品外形尺寸是否符合规格要求的同时也要注意排查诸如鼓起变形或者凹陷等问题的存在可能性。 - **表层损伤状况**:仔细观察成品表面上是否存在任何划痕或是其他形式的人为损害痕迹,另外像皱纹这样的细微变化也不应被忽视掉[^1]。 #### 应用实例——圆柱形锂离子电池 针对特定形状的产品如圆柱型锂电芯,在实际操作过程中会采用更加精准高效的手段来进行全方位扫描。例如某些品牌推出的智能视觉解决方案能够在高速运转环境下稳定工作,不仅提高了工作效率还大大降低了误检率,确保每一个出厂单品都达到最优品质状态[^3]。 #### 工作流程详解 整个过程大致可以分为以下几个环节: 当待检验对象进指定区域后会被摄像头迅速抓拍成静态影像; 接着由计算机程序自动完成初步筛选剔除不合格品项; 最后再经过一轮细致复查最终确定良品库发货前的最后一道工序[^4]。 ```python def defect_detection(image_data): """ Simulate the process of detecting defects on lithium battery surfaces using machine vision. Args: image_data (str): Path to an image file containing a picture of a lithium-ion cell. Returns: dict: A dictionary with keys indicating types of detected flaws and values representing their presence or absence. """ import cv2 img = cv2.imread(image_data) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Placeholder for actual detection logic which would involve complex algorithms results = { 'broken_characters': False, 'edge_burr': True, 'misalignment': False, 'dimensional_tolerance': True, 'bulging': False, 'wrinkles': True, 'scratches': False } return results ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值