雷达基础教程入门篇6--信号处理之CFAR恒虚警检测

(1)为什么要做恒虚警检测  

由于接收机输出端中肯定存有噪声(包括大气噪声、人为噪声、内部噪声和杂波等),而信号一般是叠加在噪声上的。这就需要在接收机输出的噪声或信号加噪声条件下,采用检测技术判别是否有目标信号。

恒虚警检测器首先对输入的噪声进行处理后确定一个门限,将此门限与输入端信号相比,如输入端信号超过了此门限,则判为有目标,否则,判为无目标。

为了使系统的虚警概率保持恒定,此门限是随输入噪声变化而进行快速的自适应调整的,噪声处理方法是随噪声的不同分布而异,因而恒虚警检测技术包括恒虚警处理技术和目标检测技术两大部分。恒虚警处理技术包括快门限、慢门限处理技术、目标检测包括似然比检测、二进制检测、序贯检测和非参量检测等。

          

(2)恒虚警检测的方法  

对于雷达二维FFT后的频谱,极值点的查找存在多种方式,下面介绍几种CFAR的算法。

① 均值类CFAR

核心思想是通过对参考窗内采样数据取平均来估计背景功率。

  CA-CFAR、GO-CFAR、SO-CFAR算法这三个是最经典的均值类CFAR算法,后续有其变形log-CFAR算法但是原理是相同的。

          

图片

如算法框图中所示,CA-CFAR对检测单元以外的单元分别求和,将求和后的值除以2,得到一个阈值,将此阈值输入到一个乘法器,输入α倍数作为检测门限,最后与被检测单元的能量相比较,目标大于检测门限,则作为极值点输出。   

② 统计有序CFAR

核心思想:通过对参考窗内的数据由小到大排序选取其中第K个数值假设其为杂波背景噪声。

图片

  

③ 自适应CFAR

针对不同的杂波选用不同的决策方法来进行。

HC-CFAR:

图片

          

VI-CFAR:

图片

④ 杂波图CFAR

经典的空域杂波图CFAR算法,假设每个距离元和方位角上的平方率值遵从独立同分布,通过对时间维上的数据进行遗忘迭代来拟合杂波背景噪声。

图片

更多内容,可关注微信公众号:RADAR驿站 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值