深度学习中评估指标:准确率Accuracy、召回率Recall、精确率Precision、特异度(真阴性率)和误报率、灵敏度(真阳性率)和漏报率、F1、PR、ROC、AUC、Dice系数、IOU

目录

准确率(Accuracy)

精确率(Precision,查准率)

召回率(Recall=TPR)

Precision-Recall曲线

F值(F-Measure,综合评价指标)

特异度TNR(真阴性率、specificity)

误报率(FPR、假阳性率)

灵敏度TPR(真阳性率、sensitivity)

漏报率(假阴性率、FNR)

ROC和AUC

Dice系数和IOU


                                       预测

1

0

实际情况

1

真阳性 (TP)

假阴性 (FN)

Recall=\frac{TP}{TP+FN}

FNR=\frac{FN}{TP+FN} = 1- Recall(sensitivity)

0

假阳性(FP)

真阴性 (TN)

specificity(TNR)=\frac{TN}{FP+TN}

FPR=\frac{FP}{FP+TN} = 1- specificity

Precision=\frac{TP}{TP+FP}

漏报率=

Accuracy=\frac{TP+TN}{TP+TN+FP+FN}

True Positives, TP(真阳性):预测为正样本,实际为正样本
False Positives,FP(假阳性):预测为正样本,实际为负样本
True Negatives,TN(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值