期权价格计算

期权简介

📊看涨期权(按照一定价格买入的权利)和看跌期权(卖出的权利)。美式期权在到期日之前可以被选择执行,欧式期权只能在到期日执行。

头寸:期权也分多头空头。多头为买入期权方,空头为卖出期权(也叫做承约方)。

如果K是执行价格,St为最终价格。

看涨多头收益为max(St-K,0),看跌多头收益为 m a x ( K − S T , 0 ) max(K-S_T,0) max(KST,0)。也即K>St是才会行权(按照K卖出股票),否则可以直接按照市场价卖出。

期权标的资产有:

  • 股票期权
  • 货币期权
  • 指数期权
  • 期货期权

期权被分为

  • 实值期权:可以行使获内涵价值。
  • 平值期权
  • 虚职期权

对于美式期权来讲,期权还有时间价值,也就是说可以不在有内涵价值时立即行权而是等待。期权整体价值=内涵价值+时间价值。

期权价格影响因素

接下来讨论期权价格的影响因素。

股票价格和执行价格

对于看涨,收益等于股票价格-执行价格。故股票价格上升, 价值增加,执行价格上升,价值减小。

对于看跌,收益等于执行价格-股票价格。股票价格上升,价值减小,执行价格上升,价值增大。

期权期限

对于美式期权,在较短期限的期权行使时,较长期限期权也能被行使,故长期限期权价格较高。

一般来说,欧式也是长期价格较高。但也有可能因为股息之类的因素导致短期价格较高。

波动率

波动率越高,股票价格变动越大。

对于期权持有者来讲,波动率越大,其获利机会越大,但是损失是有上限的(最多损失期权费用)故随着波动率上升,期权价格上涨。

无风险利率r

当r上升,看涨期权价值增加,看跌期权价值降低。

(股票价格不变时)因为当r上升时,看涨收益=股票价格-执行价格,r上升导致执行时花的钱现值减少,故收益增加,价值增加。

看跌收益=执行-股票。这里按照执行价格卖出资产,因为r上升,现值减少,故价值降低。

期权价格的上下限

上限

对于看涨期权,期权的价格不会超出股票的价格,证明:因为如果期权价格大于股票价格,可以进入看涨期权空头,并用卖出期权的钱来买股票(用于承约),然后差价就是纯赚。 c ≤ S 0 c\le S_0 cS0

对于看跌期权,持有者可以按照价格K卖出股票,故期权价值不会高出执行价格: P ≤ K P \le K PK , 假如期权价格高于执行价格,那么可以卖出看跌期权获取P,此时承约内容(看跌空头)是按照K元买入股票,因为P大于K,故怎么都是赚的。如果是欧式期权,那么 p ≤ e − r T K p\le e^{-rT}K perTK,也就是说卖出期权的价格肯定小于执行价格的贴现。

无股息看涨期权下限

🥎欧式看涨期权的下限是 S 0 − K e − r T S_0-Ke^{-rT} S0KerT

理解:对于承约方,先通过 S 0 S_0 S0购买股票用于承约,之后卖出K元,净现值为 K e − r T − S 0 Ke^{-rT}-S_0 KerTS0,那么对于购买者,拿到这份期权就是反着的价值。可以得到价值为 S 0 S_0 S0的股票,执行花费现值是 K e − r T Ke^{-rT} KerT,故下限是 S 0 − K e − r T S_0-Ke^{-rT} S0KerT

如果期权价格低于了这个下限,根据低买高卖,套利者可以买入看涨期权,并且卖空股票用钱来无风险投资,之后通过执行期权来平仓股票。

无股息看跌期权下限

K e − r T − S 0 Ke^{-rT} - S_0 KerTS0

💬理解:期权持有者卖出成本为S0的股票,获取现值为 K e − r T Ke^{-rT} KerT的钱。

如果价格小于该值,假设为 K e − r T − S 0 > x Ke^{-rT} - S_0 >x KerTS0>x,那么套利者可以借入 S 0 + x S_0+x S0+x元,花x购买该期权,并且购买股票,然后按照,最后按照K的价格卖出股票,并且归还银行 ( x + S 0 ) ∗ e r T < K (x+S_0)*e^{rT}<K (x+S0)erT<K,来进行套利。如果股票价格大于K,那么能套利更多。

平价关系式

📕对于同样执行价格的期权,有如下关系式

假设具有以下两种资产组合

  • A:看涨期权和到T收益为K的零息债券(准备用于执行)
  • B:看跌期权和一个股票(准备用于卖出)

S T > K S_T>K ST>K,对于A,那么看涨期权会被行使,期权收益为 S T − K S_T-K STK,加上债券收益,总价值为St(相当于用债券加上期权换取股票),而B期权不会被行使,会直接卖出,总价值也是St

S T < K S_T<K ST<K,A的看涨期权不会被行使,总价值为K,B的看跌期权被行使,价值也是K。

综上,两种组合的价值是 m a x ( S T , K ) max(S_T,K) max(ST,K)

因为两种组合价值相同,在无套利时,两种组合的现值相等。

c + K e − r T = p + S 0 c+Ke^{-rT}=p+S_0 c+KerT=p+S0

这就是put-call parity

为什么美式看涨不会提前行使?

假如股票在行权后还要持有一段时间(比如一个月),因为执行花费可以无风险投资,并且规避了一个月后股票价格低于K的风险。

而如果确实想在这个时候获利,可以卖掉期权,而不是行使期权。证明:因为 C ≥ c ≥ S 0 − K ∗ e − r T > S 0 − K C\ge c\ge S_0-K*e^{-rT}> S_0-K CcS0KerT>S0K,故 C > S − K C>S-K C>SK,期权价格一定大于其内涵价值。这是因为时间价值导致的。

美式看跌期权

当判断实值够大时,可以提前行使就应该提前行使期权,来立即获得收益。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值