Roberts算子:局部差分算子寻找边缘,边缘定位精度较高,对陡峭边缘且含噪声少的图像效果较好。 容易丢失一部分边缘,没经过平滑处理,不具备能抑制噪声能力
Sobel算子和Prewitt算子:先做加权平滑,后微分,有抑制噪声能力,边缘定位较准。边缘容易出现多像素宽度,出现虚假边缘。
拉普拉斯算子:不依赖于边缘方向的二阶微分算子,对阶跃型边缘点定位准确。对噪声敏感,噪声成分加强,抗噪声能力差,易丢失一部分边缘的方向信息。
高斯-拉普拉斯算子:先用高斯函数作平滑滤波,后用拉普拉斯算子检测边缘,克服了拉普拉斯算子抗噪声能力比较差的缺点。在抑制噪声的同时,平滑掉了比较尖锐的边缘,造成无法检被测到尖锐边缘
Canny算子:此方法不容易受噪声的干扰,能够检测到真正的弱边缘。在edge函数中,最有效的边缘检测方法是Canny方法。该方法的优点在于使用两种不同的阈值分别检测强边缘和弱边缘,并且仅当弱边缘与强边缘相连时,才将弱边缘包含在输出图像中。因此,这种方法不容易被噪声“填充”,跟容易检测出真正的弱边缘。
Kirsch算子:对灰度渐变和噪声较多的图像处理效果较好。