matlab图像边缘检测——canny算子

本文介绍了Canny算子,一种经典边缘检测算法,步骤包括噪声抑制、梯度计算、非极大值抑制、阈值处理和边缘连接。Canny算子在图像分割和目标检测中广泛应用。并通过代码展示了如何在Python中实现Canny边缘检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.canny算子概述

Canny算子是一种经典的边缘检测算法,由John F. Canny在1986年提出。它可以有效地检测图像中的边缘,并且对噪声具有较强的抵抗能力。

Canny算子的主要步骤包括:

  1. 噪声抑制:使用高斯滤波器来平滑图像,以减少噪声的影响。

  2. 计算梯度:通过应用Sobel算子(通常是水平和垂直方向的)计算图像的梯度,得到每个像素点的梯度强度和方向。

  3. 非极大值抑制:对图像中的每个像素点,根据其梯度方向,在沿着该方向上的两个相邻像素点上进行比较,保留局部最大值,将非极大值抑制。

  4. 阈值处理:通过设定高低阈值,将非极大值抑制后的梯度图像转化为二值图像。高阈值确定边缘候选点,低阈值用于连接边缘。

  5. 边缘连接:根据高阈值确定的边缘候选点和低阈值连接边缘候选点,得到最终的边缘图像。

Canny算子的优点是可以提供细化的、连续的边缘,同时对噪声有较强的抵抗能力。它被广泛应用于计算机视觉领域的边缘检测任务,如图像分割、目标检测等。

2.代码实现

clear all;
close all;
clc;
I=imread('coin.png');
I=im2double(I);
I=rgb2gray(I);
[K,thresh]=edge(I,'canny');
figure;
subplot(121),imshow(I);
subplot(122),imshow(K);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安心不心安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值