切比雪夫不等式

切比雪夫不等式推导过程

问题描述

∀ ϵ > 0 \forall \epsilon > 0 ϵ>0 ,有 P ( ∣ x − E ( x ) ∣ ≥ ϵ ) ≤ D ( x ) ϵ 2 P(|x-E(x)| \geq \epsilon ) \leq \frac{D(x)}{\epsilon^2} P(xE(x)ϵ)ϵ2D(x)

证明

记: D : ∣ x − E ( x ) ∣ ≥ ϵ D: |x-E(x)| \geq \epsilon D:xE(x)ϵ,有 ∣ x − E ( x ) ∣ ϵ ≥ 1 \frac{|x-E(x)|}{\epsilon} \geq 1 ϵxE(x)1

则: P ( ∣ x − E ( x ) ∣ ≥ ϵ ) = ∫ D f ( x ) d x P(|x-E(x)| \geq \epsilon ) = \int_{D} f(x)dx P(xE(x)ϵ)=Df(x)dx

≤ ∫ D ∣ x − E ( x ) ∣ ϵ 2 f ( x ) d x \leq \int_{D} {\frac{|x-E(x)|}{\epsilon}}^2 f(x)dx DϵxE(x)2f(x)dx

= 1 ϵ 2 ∫ D ( x − E ( x ) ) 2 f ( x ) d x =\frac{1}{\epsilon^2} \int_D (x-E(x))^2 f(x) dx =ϵ21D(xE(x))2f(x)dx

≤ 1 ϵ 2 ∫ − ∞ + ∞ ( x − E ( x ) ) 2 f ( x ) d x \leq \frac{1}{\epsilon^2} \int_{-\infty}^{+\infty} (x-E(x))^2 f(x)dx ϵ21+(xE(x))2f(x)dx

= D ( x ) ϵ 2 =\frac{D(x)}{\epsilon^2} =ϵ2D(x)

MathTsing

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值