前面我做了一期教程,带大家通过ollama本地部署了deepseek-r1本地大模型,还有本地部署了dify智能体平台,实现了 本地部署deepseek+dify搭建本地知识库。
有朋友提出新的需求:我有很多微信群,想要给每个群接入智能客服回复群内客户的提问,能否实现?
这个需求,还真能实现!接下来,带大家实操起来!
注意:本文基于教程:DeepSeek + Dify :零成本搭建企业级本地私有化知识库保姆级喂饭教程 部署,需要先按照该教程部署完再看本教程。
提醒:请使用完成了实名认证的小号登录,因为微信政策太严格,任何非官方登录方式,都有一定封号风险,请务必谨慎,不要用大号!不要用大号!不要用大号!如果封号,后果自己承担!!!
一、下载dify-on-wechat项目
github地址:https://github.com/hanfangyuan4396/dify-on-wechat
在此,感谢韩方圆大佬的开源项目,希望大家也可以多多支持他!
一)下载项目ZIP压缩包
我们在github仓库下载项目zip压缩包:
二)解压
解压ZIP压缩包,并重命名:
三)配置文件
进入项目根目录,配置文件重命名:
打开配置文件config.json,可以看到,需要做一些基本配置,我们暂时只需要关注几个参数即可:
- dify应用的api接口地址
- dify应用的api_key
- 机器人的名称,本教程我把机器人的名称叫做:阿坡
二、获取Dify智能体接口地址及api_key
三、配置config文件
四、下载项目依赖
在项目根目录下,执行如下命令安装依赖:
pip install -r requirements.txt
五、启动项目并登录微信
使用vscode启动项目:
六、扫码登录
终端输出二维码后,进行扫码登录,当输出 “Start auto replying” 时表示自动回复程序已经成功运行了(注意:用于登录的账号需要先在微信支付那里完成实名认证!!!)
再次提醒:请使用完成了实名认证的小号登录,因为微信政策太严格,任何非官方登录方式,都有一定封号风险,请务必谨慎,不要用大号!不要用大号!不要用大号!如果封号,后果自己承担!!!
扫码登录后你的账号就成为机器人了,手机端不会有新开的窗口, 你可以让好友给你发送消息, 也可以自己给好友发送消息, 只要能命中触发条件都可触发自动回复,电脑端的终端仅是显示日志。
- 单聊中: 要发送以
single_chat_prefix
配置作为前缀的消息, 如 “@阿坡 你好”。若前缀配置为空时,聊天则不需要加前缀 - 群聊中: 好友@你就会触发, 你自己发送以
group_chat_prefix
配置为前缀的消息同样也会触发
七、测试
一)单聊
我用大号给小号发消息,跟小号聊天,他就是按照知识库设置好的语料库的数据进行回答。
二)群聊
八、小结
到这里,我们已成功打通从本地化部署DeepSeek大模型到Dify智能体平台集成,最终实现微信生态落地的完整技术链路。虽然还不是很完美,比如:有些回复内容带有过程,显得有些啰嗦,对于那些希望简洁的朋友来说,不是很友好,这些都可以后面继续优化,我们技术上先跑通最小闭环,然后一步步优化细节。
场景也有很多,除了智能客服,还有群管理机器人等。
这个最小闭环标志着智能体系统建设已跨越从0到1的基础设施搭建阶段,正式进入精细化运营与技术深水区。
不是很友好,这些都可以后面继续优化,我们技术上先跑通最小闭环,然后一步步优化细节。
场景也有很多,除了智能客服,还有群管理机器人等。
这个最小闭环标志着智能体系统建设已跨越从0到1的基础设施搭建阶段,正式进入精细化运营与技术深水区。
比如:构建多级召回体系,引入Rerank增强模块,动态参数优化,多模态数据实践(视频,音频,图片数据如何处理等),海量数据如何处理等等,以本教程为起点,持续突破智能体系统的性能边界,在架构设计、算法优化、工程落地的三维空间继续开拓实践吧!