软件测试大模型Agent探索(dify:chatflow+企业微信机器人)

大模型在测试领域应用提高测试效率。使用本地部署的dify+deepseek大模型,使用dify的本地知识库创建的Chatflow工作流,将生成的测试相关结论同步推送到企业微信群中,是团队对测试相关内容做到实时同步。

探索点:本地部署dify平台的知识库、chatflow配置及推送大模型生成内容到企业微信群。实现流程如下:

1.介绍

本地部署Dify1.3.0Docker Compose 部署 | Dify,以及使用硅基流动deepseek-r1:硅基流动系统

Dify 工作流分为两种类型:

  • Chatflow:面向对话类情景,包括客户服务、语义搜索、以及其他需要在构建响应时进行多步逻辑的对话式应用程序。

  • Workflow:面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。

2.创建企业微信群机器人

在企业微信--群管理中,创建群机器人,创建后如下图。记录webhook地址,尤其是key=后面的字段,在后续设置chatflow中,调用企业微信工具时需要填写此Key(需要保护自己Key防止泄露)。

3.dify配置各类信息及chatflow工作流

3.1dify配置硅基流动模型

登录dify后,点击右上角用户--“设置”--模型供应商,配置大模型。本次使用硅基流动提供的各类模型。【硅基流动有活动,注册认整后送14元tokens,基本满足探索学习的使用】

3.2dify安装企业微信-发生群消息工具

大模型不具备直接使用外部工具的能力,需要通过自己开发的工具或者已发布的三方工具等进行调用。本次使用dify工具市场自带的工具插件。

工具--市场:下拉找到企业微信图标,点击安装

3.3dify本地知识创建

        大模型存在自身不足知识局限性、缺乏专业深度等不足之处。RAG(Retrieval-Augmented Generation,检索增强生成)技术应运而生。无需微调大模型参数,通过模型外知识库增强,将非参数化的外部知识库、文档与大模型结合,提示词提交大模型前,先从RAG中补充提示词,从而弥补模型在知识专业性和时效性上的不足,减少生成不确定性,在确保数据安全的同时,充分利用领域知识和私有数据。

        创建本地知识库,也是为了解决公司内部信息、文档,保密安全性,减少内部文档信息上传网络知识库泄露风险。

        dify支持常见本地知识库和对接外部知识库,本次因自己本地部署dify社区版本,使用本地知识库。

创建知识库

进入知识库页面,创建知识库。

文件上传知识并设置模型参数

索引方式:高质量

Embedding模型:选择bge-m3,按需选择embedding模型。

Rerank 模型: 选择bge-reanker-v2-m3。开启后将使用第三方 Rerank 模型再一次重排序由全文检索召回的内容分段,以优化排序结果。向 LLM 发送经过重排序的分段,辅助其提升输出的内容质量。

         配置后,前往文档。进行分块查看,以及召回测试。若测试结果符合预期,同时确定知识库模型参数后上传准备好的其他知识文件。

3.4chatflow创建

1.创建chatflow工作流及设置

工作室--创建空白应用--Chatflow

功能配置,开始节点使用默认配置

2.增加条件选择节点

上传文件检测是否需要进行文档提取,增加条件选择节点。调整if参数:选择系统参数sys.flies,else无需条件。

3.增加文档提取器节点

if条件节点添加文档提取器节点,用作上传的文档内容提取。

输出参数:开始的sys.flies

4.增加知识检索节点

将前面用户输入的提示词,以及上传文档提取的信息,调用本地知识库进行检索增强后,提交给大模型。

查询变量:sys.query

知识库:选择当前工作流需要的、已经配置的知识库。

5.大模型LLM配置

模型:deepseek-R1

上下文:配置知识库处理后的提示词参数

6.增加代码执行

大模型处理的返回是流式信息,文本量很大,输出时候出给后面机器人是无法全部接收发送,为减少文本量,需要去除流式信息think内容,将去除后信息发送企业微信。解决因文字数量超限,企业微信群中收到信息不全。

# 代码有Trae调用deepseek-v3生成
import re

def main(llm_str: str) -> dict:
    # 一次性移除<think>标签和开头的空行
    final_text = re.sub(
        r'<think[^>]*>.*?</think>|^\n+', 
        '', 
        llm_str, 
        flags=re.DOTALL
    )
    return {"result": final_text}

7.添加发送群消息节点

将代码执行处理后的信息给到发送群消息工具,发送给企业微信机器人

8.结束节点

结束节点:必须添加,不然预览或者发布时提示报错。

9.配置小技巧

        上面节点是按照图上节点关键信息进行的说明,因编排知识拖拽等操作,可以按需随时调整。节点间流程线条无法拖拽,但是可以选择线条删除,然后重新点击拖拽增加期望调整的节点顺序。

10.预览调试及发布

1.单节点调试运行:点击选择需要调试的节点,在右侧节点名称框中根据需要进行运行调试,与输出参数的,需要在输出框中添加参数或者文件等运行。

2.整体工作流预览调试

3.调试功能无异常后点击发布,若有需要优化调整,调整后及时发布更新。

3.5使用验证

工作流执行结果如下:

同时,企业微信群里收到消息如下:

4.后续

本次使用了dify-chatflow实现了简单组合功能,关键工作流跑通、验证了可行性。后续可以基于chatflow以及自己业务场景进行深度复杂定制。

### 如何将Dify集成到企业微信 #### 创建和配置企业微信应用 在创建和配置企业微信应用的过程中,需先访问企业微信的应用管理页面。在此页面上点击选择或添加新凭证,在弹出的创建凭证对话框中设定自定义凭证名称,并输入已获取的企业微信的企业ID、应用AgentId以及Secret[^1]。 #### 获取必要的鉴权信息 为了确保能够顺利地进行集成工作,需要从企业微信后台获取一系列重要的鉴权参数。这包括但不限于企业的CorpID(即企业ID)、应用特有的AgentId及其对应的Secret。这些数据可以在企业微信的应用详情页面找到,其中Secret可能需要通过特定的操作来显示,比如点击获取按钮并在聊天窗口内接收[^3]。 #### 保存重要密钥与URLs 当所有必需的信息都被正确录入之后,应特别注意保存由AppFlow生成的Token和EncodingAESKey至安全的地方。同时也要留意保存WebhookUrl,这是用于后续消息推送的关键地址之一。另外还需维护一份最新的IP白名单列表以保障通信的安全性。 #### 进一步配置连接流 完成以上步骤后,则进入到基本信息配置阶段。此时应当按照指引填写相应的连接流名称及描述文字等内容,随后继续推进直到整个流程配置完毕并最终发布该连接流。此过程中所得到的WebhookUrl务必妥善保管以便将来使用。 #### 利用Dify云平台创建聊天助手 最后,在拥有了一套完整的认证资料之后就可以着手于基于Dify云平台上构建专属的聊天机器人了。这里会涉及到先前准备好的wechat_token和appId等信息,它们将在Dify on WeChat的相关设置环节发挥重要作用[^4]。 ```python # 示例Python代码片段展示如何初始化一个简单的HTTP请求发送给企业微服务端口 import requests def send_message_to_wechat(webhook_url, message): headers = {'Content-Type': 'application/json'} data = {"msgtype": "text", "text": {"content": f"{message}"}} response = requests.post(url=webhook_url, json=data, headers=headers) return response.json() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试老吴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值