kaggle notebook的配置查看以及kaggle的GPU与本地显卡性能比较

import torch
print(torch.version.cuda)

!nvcc -V

10.0.130

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
###############################查看CPU##############################

!cat /proc/cpuinfo | grep "cpu cores" | uniq

!cat /proc/cpuinfo |grep "processor"|wc -l

运行后会发现是单核双线程

###############################查看GPU##############################

命令:

!apt install lshw -y

!lshw -C display

结果:

  *-display                 
       description: 3D controller
       product: GP100GL
       vendor: NVIDIA Corporation
       physical id: 4
       bus info: pci@0000:00:04.0
       version: a1
       width: 64 bits
       clock: 33MHz
       capabilities: bus_master cap_list
       configuration: driver=nvidia latency=0
       resources: iomemory:80-7f iomemory:c0-bf irq:33 memory:fc000000-fcffffff memory:800000000-bffffffff memory:c00000000-c01ffffff ioport:c000(size=128)

------------------------------------------------------------------------------------

命令:

!nvidia-smi 

结果:

Fri Sep 20 09:32:32 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67       Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla P100-PCIE...  On   | 00000000:00:04.0 Off |                    0 |
| N/A   34C    P0    25W / 250W |      0MiB / 16280MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

------------------------------------------------------------------------------------

命令:

!nvidia-smi --query-gpu=name --format=csv,noheader

结果:

Tesla P100-PCIE-16GB

#################################################################################

根据[1]:最好的经验法则是:如果用RNN,请看带宽;如果用卷积,

请看FLOPS(floating point operation);如果有钱,上Tensor Cores(除非你必须购买Tesla)

显存爆炸可以调整batch_size

使用了kaggle的Tesla P100-PCIE-16GB和实地Titan 2080做比较.

对RSNA颅内出血比赛的数据集进行测试.一个epoch:

Tesla P100-PCIE-16GB:7小时

Titan 2080:3.5小时不到

爆内存的话可以考虑batch_size

这个现象很古怪,为什么Titan 2080 比Tesla P100-PCIE-16GB 还快呢?

这是因为后者是在虚拟机中被分配出来的GPU,而不是真实的物理机GPU

调度时间占据了大量的训练时间。

和高校中的硕博聊天发现,大部分实验室都喜欢一台服务器(高配版的GPU)被多个人同时训练使用,导致每个人的训练速度还不如单独一台电脑+一个低配版的GPU

所以AI训练中,大家共同占用一个GPU并不是什么很好的习惯,对于学术论文中给出的数据也应该辨证地对待。

另外:

Titan2080有四个接口可以链接四个显示器,但是被训练的显卡连接的显示器可能会发生屏幕抖动。

Reference:

[1]深度学习显卡选型指南:关于GPU选择的一般建议-电子发烧友网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值