其实我是在:
<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>看到这两个词语的
转载内容如下:
在论文《 ImageNet Classification with Deep Convolutional Neural Networks》中描述激活函数时,用了饱和非线性函数和非饱和非线性函数的区别。这里在这里描述其差别。
- 直观理解
饱和激活函数会压缩输入值。 - 定义
- 举例
对于Rectified Linear Unit (ReLU)激活函数f(x) = max(0, x)
,当x趋于正无穷则f(x)也趋于正无穷。所以该函数是非饱和的。
sigmoid函数的范围是[0, 1]所以是饱和的。
tanh函数也是饱和的,因为其取值范围为[-1,1]。
本文是下面链接的翻译:英文原文