具有典型非线性特性的二阶系统的相轨迹(1)

1.典型非线性特性数学表达式

(1)饱和非线性特性

在这里插入图片描述
y ( t ) = { M ,       x ( t ) > a K x ( t ) , ∣ x ( t ) ∣ ⩽ a − M , x ( t ) < − a y(t)= \left\{\begin{array}{l} M, \ \ \;\qquad x(t) > a \\ Kx(t), \quad |x(t)| ⩽a \\ -M, \qquad x(t) <-a \end{array}\right. y(t)=M,  x(t)>aKx(t),x(t)aM,x(t)<a

(2)死区特性

在这里插入图片描述
y ( t ) = { K x ( t ) − a , x ( t ) > a 0 ,     ∣ x ( t ) ∣ ⩽ a K x ( t ) + a , x ( t ) < − a y(t)= \left\{\begin{array}{l} Kx(t)-a, \quad x(t) > a \\ 0, \qquad \qquad \ \ \ |x(t)| ⩽a \\ Kx(t)+a, \quad x(t) <-a \end{array}\right. y(t)=Kx(t)a,x(t)>a0,   x(t)aKx(t)+a,x(t)<a

(3)变增益特性

在这里插入图片描述
y ( t ) = { K 1 x ( t ) , ∣ x ( t ) ∣ ⩽ a K 2 x ( t ) , ∣ x ( t ) ∣ > a y(t)= \left\{\begin{array}{l} K_1x(t), \quad |x(t)| ⩽a \\ K_2x(t), \quad |x(t)| >a \end{array}\right. y(t)={K1x(t),x(t)aK2x(t),x(t)>a

2.具有典型非线性环节的二阶系统的相轨迹

系统的结构图
在这里插入图片描述
线性部分为二阶系统
G ( s ) = K s ( T s + 1 ) G(s)=\frac{K}{s(Ts+1)} G(s)=s(Ts+1)K
其中 K > 0.   T > 0 K>0.\ T>0 K>0. T>0。取 e − e ˙ e-\dot{e} ee˙平面,列写系统的微分方程
{ e = r − c u K s ( T s + 1 ) = c \left\{\begin{array}{l} e=r-c \\ u{\cfrac{K}{s(Ts+1)}}=c \end{array}\right. e=rcus(Ts+1)K=c
化简可得
T e ¨ + e ˙ = T r ¨ + r ˙ − K u T\ddot{e}+\dot{e}=T\ddot{r}+\dot{r}-Ku Te¨+e˙=Tr¨+r˙Ku

(1)饱和非线性特性

①当 r = 0 r=0 r=0 r = 1 ( t ) r=1(t) r=1(t)
T e ¨ + e ˙ = { − K M , e > a , I 区 − K e ,     ∣ e ∣ ⩽ a   II 区 K M ,       e < − a    III 区 T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -KM, \qquad e > a, \quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right. Te¨+e˙=KM,e>a,IKe, eaIIKM,  e<a   III
开关线 e = ± a e=\pm a e=±a I \text{I} I III \text{III} III区的等倾线方程为
e ˙ = ∓ K M T α + 1 \dot{e}=\frac{\mp KM}{T\alpha+1} e˙=Tα+1KM
由二阶线性系统的相轨迹分析可知,这两个区域无奇点。当 α = 0 \alpha=0 α=0时,会有两条特殊的等倾斜线
e ˙ = ∓ K M \dot{e}=\mp KM e˙=KM
在这里插入图片描述
II \text{II} II区的微分方程为
T e ¨ + e ˙ + K e = 0 T\ddot{e}+\dot{e}+Ke=0 Te¨+e˙+Ke=0
由二阶线性系统的相轨迹分析可知,该区域奇点为原点。微分方程特征根为
s 1 , 2 = − 2 ± 1 − 4 K T 2 s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2} s1,2=22±14KT
奇点为稳定节点或者稳定焦点,等倾线方程
e ˙ = − K T α + 1 e \dot{e}=-\frac{K}{T\alpha+1}e e˙=Tα+1Ke
过零点的一簇直线。
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 2 a=2 a=2 M = 1 M=1 M=1,奇点为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 0.2 a=0.2 a=0.2 M = 1 M=1 M=1,奇点为稳定节点,相轨迹图
在这里插入图片描述
②当 r = v t r=vt r=vt
T e ¨ + e ˙ − v = { − K M , e > a     I 区 − K e ,     ∣ e ∣ ⩽ a   II 区 K M ,       e < − a    III 区 T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -KM, \qquad e > a \ \,\quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right. Te¨+e˙v=KM,e>a IKe, eaIIKM,  e<a   III
开关线 e = ± a e=\pm a e=±a I \text{I} I III \text{III} III区的等倾线方程为
e ˙ = v ∓ K M T α + 1 \dot{e}=\frac{v \mp KM}{T\alpha+1} e˙=Tα+1vKM
v − K M = 0 v-KM=0 vKM=0时, I \text{I} I区奇点位于 e e e轴上, III \text{III} III区无奇点。当 v − K M ≠ 0 v-KM\not=0 vKM=0时, I \text{I} I区和 III \text{III} III区无奇点。当 α = 0 \alpha=0 α=0时,会有两条特殊的等倾斜线
e ˙ = v ∓ K M \dot{e}=v \mp KM e˙=vKM
II \text{II} II区的微分方程为
T e ¨ + e ˙ + K e = v T\ddot{e}+\dot{e}+Ke=v Te¨+e˙+Ke=v
改写微分方程
α = d e ˙ d e = v − K e − e ˙ T e ˙ \alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{v-Ke-\dot{e}}{T\dot{e}} α=dede˙=Te˙vKee˙
该区域奇点为 ( v / K , 0 ) (v/K,0) (v/K,0)。微分方程特征根为
s 1 , 2 = − 2 ± 1 − 4 K T 2 s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2} s1,2=22±14KT
奇点为稳定节点或者稳定焦点,等倾线方程
e ˙ = 1 T α + 1 ( − K e + v ) \dot{e}=\frac{1}{T\alpha+1}(-Ke+v) e˙=Tα+11(Ke+v)
过点 ( v / K , 0 ) (v/K,0) (v/K,0)的一簇直线。
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 2 a=2 a=2 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 1 , 0 ) (1,0) (1,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.4 K=0.4 K=0.4 a = 2 a=2 a=2 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 2.5 , 0 ) (2.5,0) (2.5,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 2 K=2 K=2 a = 2 a=2 a=2 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 0.5 , 0 ) (0.5,0) (0.5,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 6 a=6 a=6 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点(4.167,0)为稳定节点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 0.2 a=0.2 a=0.2 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 4.167 , 0 ) (4.167,0) (4.167,0)为稳定焦点,相轨迹图
在这里插入图片描述

(2)死区特性

①当 r = 0 r=0 r=0 r = 1 ( t ) r=1(t) r=1(t)
T e ¨ + e ˙ = { − ( K e − a ) , e > a     I 区 0 ,           e ⩽ a     II 区 − ( K e + a ) , e < − a      III 区 T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right. Te¨+e˙=(Kea),e>a I0,   ea II(Ke+a),e<a  III
开关线 e = ± a e=\pm a e=±a I \text{I} I III \text{III} III区的等倾线方程为
e ˙ = 1 T α + 1 ( − K e ± a ) \dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a) e˙=Tα+11(Ke±a)
奇点为 ( ± a / K , 0 ) (\pm a/K,0) (±a/K,0),奇点为稳定节点或者稳定焦点。 II \text{II} II区的相轨迹为
α = d e ˙ d e = 1 T \alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{1}{T} α=dede˙=T1
斜率为 1 / T 1/T 1/T的直线,奇点为 e ˙ = 0 \dot{e}=0 e˙=0 e ∈ ( − a , a ) e\in(-a,a) e(a,a)的连续奇点。
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点 ( ± 1 , 0 ) (\pm1,0) (±1,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点 ( ± 4.16 , 0 ) (\pm 4.16,0) (±4.16,0)为稳定节点,相轨迹图
在这里插入图片描述
②当 r = v t r=vt r=vt
T e ¨ + e ˙ − v = { − ( K e − a ) , e > a     I 区 0 ,           e ⩽ a     II 区 − ( K e + a ) , e < − a      III 区 T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right. Te¨+e˙v=(Kea),e>a I0,   ea II(Ke+a),e<a  III
开关线 e = ± a e=\pm a e=±a I \text{I} I III \text{III} III区的等倾线方程为
e ˙ = 1 T α + 1 ( − K e ± a + v ) \dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a+v) e˙=Tα+11(Ke±a+v)
奇点为 ( ( ± a + v ) / K , 0 ) ((\pm a+v)/K,0) ((±a+v)/K,0),奇点为稳定节点或者稳定焦点。 II \text{II} II区的等倾斜线方程
e ˙ = v T α + 1 \dot{e}=\frac{v}{T\alpha+1} e˙=Tα+1v
该区域无奇点。
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 0 , 0 ) (0,0) (0,0) ( 2 , 0 ) (2,0) (2,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 0.5 v=0.5 v=0.5,奇点 ( − 0.5 , 0 ) (-0.5,0) (0.5,0) ( 1.5 , 0 ) (1.5,0) (1.5,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 2 v=2 v=2,奇点 ( 1 , 0 ) (1,0) (1,0) ( 3 , 0 ) (3,0) (3,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 1 K=1 K=1 a = 4 a=4 a=4 M = 1 M=1 M=1 v = 2 v=2 v=2,奇点 ( 1 , 0 ) (1,0) (1,0) ( 3 , 0 ) (3,0) (3,0)为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 8.333 , 0 ) (8.333,0) (8.333,0) ( 0 , 0 ) (0,0) (0,0)为稳定节点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 0.5 v=0.5 v=0.5,奇点 ( 6.25 , 0 ) (6.25,0) (6.25,0) ( − 2.083 , 0 ) (-2.083,0) (2.083,0)为稳定节点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K = 0.24 K=0.24 K=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 2 v=2 v=2,奇点 ( 12.5 , 0 ) (12.5,0) (12.5,0) ( 4.167 , 0 ) (4.167,0) (4.167,0)为稳定节点,相轨迹图
在这里插入图片描述

(3)变增益特性

①当 r = 0 r=0 r=0 r = 1 ( t ) r=1(t) r=1(t)
T e ¨ + e ˙ = { − K 1 e , ∣ e ∣ ⩽ a I 区 − K 2 e , ∣ e ∣ > a II 区 T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right. Te¨+e˙={K1e,eaIK2e,e>aII
开关线 e = ± a e=\pm a e=±a I \text{I} I区的等倾线方程为
e ˙ = − K 1 e T α + 1 \dot{e}=\frac{-K_1e}{T\alpha+1} e˙=Tα+1K1e
奇点为 ( 0 , 0 ) (0,0) (0,0),奇点为稳定节点或者稳定焦点。 I \text{I} I区的等倾线方程为
e ˙ = − K 2 e T α + 1 \dot{e}=\frac{-K_2e}{T\alpha+1} e˙=Tα+1K2e
奇点为 ( 0 , 0 ) (0,0) (0,0),奇点为稳定节点或者稳定焦点。
T = 1 T=1 T=1 K 1 = 0.5 K_1=0.5 K1=0.5 K 2 = 1 K_2=1 K2=1 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K 1 = 1 K_1=1 K1=1 K 2 = 0.24 K_2=0.24 K2=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K 1 = 0.24 K_1=0.24 K1=0.24 K 2 = 1 K_2=1 K2=1 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点为稳定节点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K 1 = 0.2 K_1=0.2 K1=0.2 K 2 = 0.24 K_2=0.24 K2=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1,奇点为稳定节点,相轨迹图
在这里插入图片描述
②当 r = v t r=vt r=vt
T e ¨ + e ˙ − v = { − K 1 e , ∣ e ∣ ⩽ a I 区 − K 2 e , ∣ e ∣ > a II 区 T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right. Te¨+e˙v={K1e,eaIK2e,e>aII
开关线 e = ± a e=\pm a e=±a I \text{I} I区的等倾线方程为
e ˙ = 1 T α + 1 ( − K 1 e + v ) \dot{e}=\frac{1}{T\alpha+1}(-K_1e +v) e˙=Tα+11(K1e+v)
奇点为 ( v / K 1 , 0 ) (v/K_1,0) (v/K1,0),奇点为稳定节点或者稳定焦点。 I \text{I} I区的等倾线方程为
e ˙ = 1 T α + 1 ( − K 2 e + v ) \dot{e}=\frac{1}{T\alpha+1}(-K_2e +v) e˙=Tα+11(K2e+v)
奇点为 ( v / K 2 , 0 ) (v/K_2,0) (v/K2,0),奇点为稳定节点或者稳定焦点。
T = 1 T=1 T=1 K 1 = 2 K_1=2 K1=2 K 2 = 1 K_2=1 K2=1 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点为稳定焦点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K 1 = 1 K_1=1 K1=1 K 2 = 0.24 K_2=0.24 K2=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点为稳定节点,相轨迹图
在这里插入图片描述
T = 1 T=1 T=1 K 1 = 5 K_1=5 K1=5 K 2 = 0.24 K_2=0.24 K2=0.24 a = 1 a=1 a=1 M = 1 M=1 M=1 v = 1 v=1 v=1,奇点 ( 0.2 , 0 ) (0.2,0) (0.2,0)为稳定焦点, ( 4.167 , 0 ) (4.167,0) (4.167,0)为稳定节点,相轨迹图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值