题目给了我们一组数prices,其中prices[i]表示第i天的股票价格,需要我们求出买卖股票所能获得的最大收益。
我们的第一想法就是从算出每一种买卖股票的情况然后求出里面的最大值,这样我们就能得到最大收益是多少,但是这种情况过于复杂他需要考虑前一天和后面所有天的情况,这无疑是复杂的,因为我们可以大致算出时间复杂度是
O
(
n
3
)
O(n^3)
O(n3),这在问题规模较小时还可以接受一旦问题规模上升,所需要的时间也快速上升,我们需要找到一种更加快速的算法。
上面思路的代码。
int maxProfit(int* prices, int pricesSize) {
int profit = 0;
for(int i=0; i<pricesSize; i++){
for(int j=i+1; j<pricesSize; j++){
int x = prices[j]-prices[i];
if(x>profit){
profit = x;
}
}
}
return profit;
}
我们想一下我们可以从哪些情况去进行优化呢?刚才我们想的是从前向后找,但是我们知道第i天的最大利润等于第i天的价钱减前i-1天中的最小值,我们这样的话求某一天的利润就不需要看很多情况只需要看一下前n-1天的最小值,这样的话时间复杂度就大大减小了,我们只需要更新前n-1天最小值就行了。
int maxProfit(int *prices, int pricesSize){
int min = prices[0];
int profit = 0;
for(int i=1;i<pricesSize;i++){
if(prices[i]<=min){
min = prices[i];
}else if(prices[i]-min>profit){
profit = prices[i]-min;
}
}
return profit;
}
运行结果截图:
上面这两种算法时间的差异主要在于第一种算法假定的是当前检查的是最小的,然后向后寻找可能比他大的,后面的都是未检查的,所以要每一种情况都检查,第二种算法是认为已经检查过的是最小的,当前检查的是最大的,我们对于最小元素的信息已知,不需要检查别的情况,在检查的过程种遇到比其更小的就更新最小的值,所以情况少时间效率高。