「刷题」Color 群论

  这道题乍一看挺水的,直接$ Ploya $就可以了,可是再看看数据范围:n<=1e9

那就是有1e9种置换,这不歇比了。

于是考虑式子的优化。

首先证明,转i次的置换的每个循环结大小是 $ gcd(i,n) $

证明:

  首先设第x个元素的位置是p,置换种类是i,循环k次后回到原点,k也就是循环结个数。

  $ ik+p \equiv p (mod n) $

  $ ik \equiv 0 (mod n) $

  $ n|ik $

  $ i|ik $

我们要让k最小,那么:

  $ ik=lcm(i,n) $

  $ ik= \frac{in}{gcd(i,n)} $

  $ k= \frac{n}{gcd(i,n)} $

每个循环结都一样大,所以循环结个数是:

  $ num= \frac{n}{\frac{n}{gcd(i,n)}} =gcd(i,n) $

证毕。

接着推polya的式子:

[s]是单位函数,s成立返回1,否则返回0。

$ans=\frac{1}{n} \sum \limits_{i=1}^n n^{gcd(i,n)} $

$  =\sum \limits_{i=1}^n n^{gcd(i,n)-1} $

$  =\sum \limits_{i=1}^n \sum \limits_{d|n} n^{d-1} $

$  =\sum \limits_{d|n} n^{d-1} \sum \limits_{i=1}^n [gcd(i,n)==d] $

$   =\sum \limits_{d|n} n^{d-1} \sum \limits_{i=1}^{\frac{n}{d}}[gcd(i,\frac{i}{n})==1]$

$  =\sum \limits_{d|n} n^{d-1} \phi{(\frac{n}{d})} $

可以分解质因子然后dfs遍历所有因数,顺便求出欧拉函数。

问题解决。

转载于:https://www.cnblogs.com/Lrefrain/p/11231018.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值