【python】for循环推求线性回归

假定数据符合的方程为y=ax+b,通过若干组[y, x]的值,设置参数取值范围。利用双层for循环,获取a和b的所有取值可能性,通过y的误差计算,来得到最优参数取值。
代码如下:

import numpy as np


class Exercise:
    def __init__(self):
        # 初始化参数
        self.a = 0
        self.b = 0

    def cal(self, x_list):
        # 计算y
        y_cal = []
        for x in x_list:
            y = self.a * x + self.b
            y_cal.append(y)
        return y_cal

    def check(self, y_true, x_list, min_error, range_1, range_2, step):
        # 迭代参数取值,输出最小误差结果
        a_list = []
        b_list = []
        best_ab_list = []
        best_parameter = []
        # 遍历a,b取值
        for self.a in np.arange(range_1,range_2,step).round(1):
            for self.b in np.arange(range_1,range_2,step).round(1):
                # 计算y值
                y_cal = self.cal(x_list)
                # 计算误差
                error_num = sum(list(map(lambda x, y: abs(x-y), y_true, y_cal)))
                # 保存结果,将结果保存在字典中并存入列表
                if error_num <= min_error:
                    dic = {
                        'a': self.a,
                        'b': self.b,
                        'error': error_num
                    }
                    best_ab_list.append(dic)
                    # 对结果排序
                    best_parameter = sorted(best_ab_list, key=lambda x: x['error'], reverse=False)
                    a_list.append(self.a)
                    b_list.append(self.b)
        # 输出最优情况下参数取值和误差
        print(best_parameter[0])
        # 返回最优参数取值
        return best_parameter[0]['a'], best_parameter[0]['b']


if __name__ == '__main__':
    # 实例化
    e1 = Exercise()
    # 数据输入
    y_true = [10, 15.6, 19.8, 24.9, 33.1, 56.7]
    x_list = [3.4, 7.9, 8.2, 10.2, 14.2, 19.0]
    # 误差定义
    min_error = 100
    a, b = e1.check(y_true, x_list, min_error, 0, 200, 0.1)
    # 格式化输出结果
    print('预测a,b值:[{},{}]'.format(a, b))
    y_eval = []
    for x in x_list:
        y = a*x+b
        y_eval.append(y)
    print('计算y值:{}\n实际y值:{}'.format(y_eval, y_true))

代码中,min_erro要尽量取的大一点,若此值太小,可能导致无结果输出。参数a和b的取值范围根据实际数据假定,若范围过大,计算时间会略长。

此程序为python算法学习中的一个练习项目,如有错误,还望指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值