大模型推理 A40 vs A6000 谁更强 - 对比 Yi-34B 的单、双卡推理性能

本文通过对比A40和A6000在大语言模型推理中的性能,发现A6000在单卡和双卡模式下均表现出微弱优势,尤其在双卡情况下性能差异更大,推测可能是nvlink带宽的影响,需进一步评测确认。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里是 大模型推理 A40 vs A6000 谁更强 - 对比 Yi-34B 的单、双卡推理性能 的笔记,详细的信息请查看视频。

引言

A40 和 A6000 从纸面数据来看基本是一模一样,但不知为啥 A40 在价格上就是比 A6000 要贵一点。这里我对比下两个卡进行大语言模型推理方面的性能差异。

这次用到了两个平台

  1. autodl 这里有 A40 显卡
  2. openbayes 这里有 A6000 显卡,并且他们的 A6000 显卡支持 nvlink 可以两个一组,获得 96G 显存

环境准备

安装依赖

pip install vllm modelscope

下载模型

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('01ai/Yi-34B-Chat-4bits', cache_dir='autodl-tmp', revision='master', ignore_file_pattern='.bin')

在 openbayes 这边支持数据绑定,类似于 autodl 那边的网盘,可以提前把数据准备好,避免使用 gpu 时再去下载,浪费计算时。

下载 vllm 代码

# source /etc/network_turbo
git clone https://github.com/vllm-project/vllm
cd vllm/benchmarks

如果是在 autodl 则需要首先执行 source /etc/network_turbo 开启学术加速,而 openbayes 这边不需要。

查看 nvlink

openbayes 的 A6000 有双卡 nvlink 可以通过命令 nvidia-smi topo -m 查看,会显示 NV4 的连接,提供大约 112.5GB 的带宽。

benchmark

单卡测试

python benchmark_throughput.py \
    --backend vllm \
    --input-len 128 --output-len 512 \
    --model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \
    -q awq --num-prompts 50 --seed 1100 \
    --trust-remote-code \
    -tp 1 \
    --max-model-len 2048

双卡测试

python benchmark_throughput.py \
    --backend vllm \
    --input-len 128 --output-len 512 \
    --model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \
    -q awq --num-prompts 50 --seed 1100 \
    --trust-remote-code \
    -tp 2 \
    --max-model-len 2048

而 openbayes 那边只需要更换一下模型路径即可。

结论

具体的参数请查看视频。

  1. 从单卡性能看,大概有 5% 的性能差异,A6000 略高于 A40
  2. 双卡性能看,有更大的性能差异,但是这更有可能是因为 nvlink 的原因,而不是显卡本身的性能差异

至于 nvlink 有无带来的性能差异则需要进一步评测了。

参考链接

  1. A6000 参数
  2. A40 参数
  3. techpowerup A6000
  4. techpowerup A40
  5. 都是 48GB 显存谁更强?RTX A6000 VS Tesla A40
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值