Stata:单位根检验就这么轻松

本文介绍了如何通过ADF、PP检验和GLS去势的ADF检验来鉴别随机趋势与确定趋势,以确保在分析含有趋势的时间序列数据时选择合适的平稳性检验。关键步骤包括随机游走模型、确定趋势识别、非平稳过程可视化和不同单位根检验方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://www.lianxh.cn/news/e414c434dcb21.html

Source: Ashish Rajbhandari[1] → Unit-root tests in Stata

目录


检验序列的平稳性是时间序列分析的关键步骤。时间序列中很多估计量的统计特性都依赖于数据是否平稳。一般意义上,一个 (弱) 平稳过程的期望、方差和自相关系数应不随时间变化。

然而,在大多可观测的时间序列中,趋势项的存在总会使得序列不具有平稳性。

趋势项包括确定趋势项和随机趋势项,趋势项的类型决定了我们需要使用什么方法将时间序列转换成平稳序列。比如,含有随机趋势项的单位根过程可以通过差分变得平稳。然而,对实际上含有确定趋势项的序列进行差分则会得到含单位根的移动平均过程。因此,在做转换之前,识别出序列的非平稳性到底是源于确定趋势项还是随机趋势项是非常重要的。

在这篇文章中,我会介绍检验单位根的三个命令。

原文链接:https://www.lianxh.cn/news/e414c434dcb21.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值