目录
一、引言
单位根检验在时间序列分析中具有重要地位,用于判断时间序列数据是否平稳。本文将详细介绍单位根检验的基本概念、理论原理以及在 Stata 中的具体操作步骤,并通过实际数据进行演示。
二、单位根检验的基本概念与理论原理
单位根检验的核心思想是检验时间序列数据的生成过程中是否存在单位根。如果一个时间序列存在单位根,那么它是非平稳的;反之,如果不存在单位根,则是平稳的。
平稳时间序列具有以下重要性质:
- 均值是常数,不随时间变化。
- 方差是常数,不随时间变化。
- 自协方差只与时间间隔有关,而与时间点无关。
单位根的存在意味着时间序列的方差和均值会随着时间无限增长,这会导致许多传统的统计方法失效,例如回归分析可能产生虚假的结果。
常见的单位根检验方法,如 ADF 检验(Augmented Dickey-Fuller Test)和 PP 检验(Phillips-Perron Test),都是基于以下模型:
对于 PP 检验,它对序列的异方差和自相关具有更强的稳健性。
三、数据准备
首先,我们需要准备一组时间序列数据。