Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg

全文阅读:Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg| 连享会主页

目录


编者按:本文的是如下论文的 Stata 实操版本
Chiang, H.D., K. Kato, Y. Ma, and Y. Sasaki, 2022, Multiway Cluster Robust Double/Debiased Machine Learning. Journal of Business & Economic Statistics, 40(3), pp. 1046-1056. -Link--PDF-

1. 背景简介

近年来,研究人员在实证研究中经常使用多通道聚类的抽样数据展开分析:如匹配后的雇主-雇员数据、匹配后的学生-教师数据、观察结果按商店和产品双重索引的匹配数据、以及观察结果按市场和产品双重索引的市场份额数据等。

这些数据通常会面临着多维相关性的问题,并不符合独立同分布的性质。并且,如果只在单一层面估计聚类标准误,就会难以兼顾另一层面相关性对结果所造成的偏误。

因此,Chiang et al.(2022)利用 Chernozhukov et al.(2018)开发的 DML工具箱(Double Machine Learning:用于估算和推断具有高维和/或无限维干扰参数的结构参数),提出了一种改进的多向交叉拟合DML估计方法,使之适应多向聚类采样数据,提升估计结果的有效性。

为了推广这一估计方法的使用,Chiang et al.(2022) 编写了 crhdreg 命令,用于估计双重聚类稳健的标准误、以及估计使用偏置机器学习(DML)方法的高维回归结果。

下文将详细介绍 crhdreg 命令的使用方法。

全文阅读:Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg| 连享会主页

### Stata 中实现双重机器学习模型的方法Stata中实现双重机器学习(DML),可以通过调用特定命令来完成。对于中介效应分析,在Stata中的处理方式不同于R语言,但依然能够通过一些高级统计工具包来进行类似的计算。 为了执行DML框架下的因果推断,可以使用`dml`命令集,该集合由第三方开发者维护并提供了一系列用于实施不同类型的DML算法的功能[^1]。下面给出一段简单的例子展示如何安装必要的软件包以及应用基本的DML流程: #### 安装所需程序包 首先确保已连接到互联网,并运行如下指令以下载和安装所需的库: ```stata ssc install dml, replace ``` #### 基于Stata 的 DML 模型实例代码 这里构建了一个假设性的数据集,并展示了怎样运用DML技术评估治疗变量\(T\)对结果变量\(Y\)的影响,同时考虑协变量矩阵\(\mathbf{X}\)的作用。 ```stata * 创建模拟数据集 clear all set obs 1000 gen T = rbinomial(1,.5) matrix C=(.3,-.2\.7,.9) drawnorm X1 X2 , corr(C) * 设定潜在的结果机制 gen Y=invnormal(uniform())+.8*T-.4*X1+.6*X2+rnormal() * 应用双重/去噪回归方法 (Double/debiased ML estimator) dml y T, controls(X1 X2) model(plogit) cv(5) seed(12345) estat effects ``` 上述脚本创建了一组二元处理指示符\(T\)、两个连续特征\(X_1,X_2\)及其对应的响应值\(Y\)。接着采用逻辑回归作为初步预测器(`model(plogit)`), 并指定交叉验证折叠数为五次(cv(5)) 来拟合最终的目标参数估计量。 请注意,实际操作时应根据具体研究背景调整输入参数的选择,比如改变使用的机器学习模型类型或其他超参数设置等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值