Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg

全文阅读:Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg| 连享会主页

目录


编者按:本文的是如下论文的 Stata 实操版本
Chiang, H.D., K. Kato, Y. Ma, and Y. Sasaki, 2022, Multiway Cluster Robust Double/Debiased Machine Learning. Journal of Business & Economic Statistics, 40(3), pp. 1046-1056. -Link--PDF-

1. 背景简介

近年来,研究人员在实证研究中经常使用多通道聚类的抽样数据展开分析:如匹配后的雇主-雇员数据、匹配后的学生-教师数据、观察结果按商店和产品双重索引的匹配数据、以及观察结果按市场和产品双重索引的市场份额数据等。

这些数据通常会面临着多维相关性的问题,并不符合独立同分布的性质。并且,如果只在单一层面估计聚类标准误,就会难以兼顾另一层面相关性对结果所造成的偏误。

因此,Chiang et al.(2022)利用 Chernozhukov et al.(2018)开发的 DML工具箱(Double Machine Learning:用于估算和推断具有高维和/或无限维干扰参数的结构参数),提出了一种改进的多向交叉拟合DML估计方法,使之适应多向聚类采样数据,提升估计结果的有效性。

为了推广这一估计方法的使用,Chiang et al.(2022) 编写了 crhdreg 命令,用于估计双重聚类稳健的标准误、以及估计使用偏置机器学习(DML)方法的高维回归结果。

下文将详细介绍 crhdreg 命令的使用方法。

全文阅读:Stata:双重机器学习-多维聚类标准误的估计方法-crhdreg| 连享会主页

Stata中,聚类稳健标准误(cluster-robust standard errors)是一种用于处理异方差和自相关的标准误估计方法聚类稳健标准误的计算方式是根据聚类变量对观察单位进行分组,然后在每个组内计算标准误。这种方法能够更准确地估计参数的标准误,尤其是在存在自相关或异方差的情况下。 与普通稳健标准误相比,聚类稳健标准误估计结果更加可靠,因为它能够纠正因同一州不同时期之间的扰动项自相关而导致的偏差问题。普通稳健标准误在处理自相关问题时默认扰动项是独立同分布的,这可能会导致估计结果的不准确。 在一些实证研究中,使用聚类稳健标准误能够更好地控制异方差和自相关的问题,从而提供更可靠的统计推断。聚类稳健标准误的计算方式可以通过Stata的cluster选项来实现。 需要注意的是,聚类稳健标准误并不是适用于所有情况的最佳选择。在某些情况下,可能需要考虑其他的标准误估计方法,如混合回归或LSDV方法。这些方法能够更好地解决特定的数据结构和假设条件下的标准误估计问题。 因此,在选择标准误估计方法时,需要根据具体的研究问题和数据特征进行综合考虑。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [(10)stata的基本使用--短面板数据处理](https://blog.csdn.net/qq_42830971/article/details/109330489)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值