AFFINITY PROPAGATION相似传播聚类

Affinity Propagation是一种无需预设聚类数目的算法,它利用数据点之间的相似度进行聚类。在AP中,所有数据点都有可能成为聚类中心(exemplar),通过迭代更新responsibilities(数据点被接纳为聚类中心的能力)和availabilities(数据点选择某聚类中心的适合程度),直到找到高质量的聚类中心。参考度(preference)影响聚类数量,算法通过调整参考度可以增加或减少聚类数目。
摘要由CSDN通过智能技术生成

AP算法不需要事先指定聚类数目,相反它将所有的数据点都作为潜在的聚类中心,称之为exemplar。
这个聚类算法,基础是置信传播,在邻近节点之间传播massage.
message分成两种,一类是responsibilities,代表从 exemplar 接纳数据点的能力,另外一类是availabilities,。
这里写图片描述

这里写图片描述
以S矩阵的对角线上的数值s (k, k)作为k点能否成为聚类中心的评判标准,这意味着该值越大,这个点成为聚类中心的可能性也就越大,这个值又称作参考度p ( preference) 。聚类的数量受到参考度p的影响,如果认为每个数据点都有可能作为聚类中心,那么p就应取相同的值。如果取输入的相似度的均值作为p的值,得到聚类数量是中等的。如果取最小值,得到类数较少的聚类。AP算法中传递两种类型的消息, (responsiility)和(availability) 。r(i,k)表示从点i发送到候选聚类中心k的数值消息,反映k点是否适合作为i点的聚类中心。a(i,k)则从候选聚类中心k发送到i的数值消息,反映i点是否选择k作为其聚类中心。r (i, k)与a (i, k)越强,则k点作为聚类中心的可能性就越大,并且i点隶属于以k点为聚类中心的聚类的可能性也越大。AP算法通过迭代过程不断更新每一个点的吸引度和归属度值,直到产生m个高质量的exemplar,同时将其余的数据点分配到相应的聚类中。

在这里介绍几个文中常出现的名词:
exemplar:指的是聚类中心。
similarity:数据点i和点j的相似度记为S(i,j)。是指点j作为点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值