(2-5)基于内容的推荐:文本分类和标签提取

2.5  文本分类和标签提取

文本分类是指将文本数据按照预定义的类别或标签进行分类的任务。它是自然语言处理(NLP)领域中的一个重要问题,具有广泛的应用,例如情感分析、垃圾邮件过滤、新闻分类等。在Python中,有多种方法可以进行文本分类和标签提取,其中常用的方法有三种:传统机器学习、卷积神经网络、循环神经网络。

2.5.1  传统机器学习方法

在Python中,可以使用机器学习技术实现文本分类和标签提取。文本分类是将文本数据分为不同的预定义类别或标签的任务,而标签提取是从文本中提取关键标签或关键词的任务。在接下来的内容中,将简要介绍两种实现文本分类和标签提取的机器学习方法。

1. 朴素贝叶斯分类器(Naive Bayes Classifier)

朴素贝叶斯分类器是一种简单但有效的文本分类方法。它基于朴素贝叶斯定理和特征独立性假设,将文本特征与类别之间的条件概率进行建模。常见的朴素贝叶斯分类器包括多项式朴素贝叶斯(Multinomial Naive Bayes)和伯努利朴素贝叶斯(Bernoulli Naive Bayes)。例如下面是一个使用朴素贝叶斯分类器进行文本分类和标签提取的例子,功能是对电影评论信息进行文本分类。

源码路径:daima/2/pusu.py

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB



# 文本数据

texts = [

    "This movie is great!",

    "I loved the acting in this film.",

    "The plot of this book is intriguing.",

    "I didn't enjoy the music in this concert.",

]



# 对文本进行特征提取

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(texts)



# 标签数据

labels = ['Positive', 'Positive', 'Positive', 'Negative']



# 创建朴素贝叶斯分类器模型并训练

clf = MultinomialNB()

clf.fit(X, labels)



# 进行文本分类和标签提取

test_text = "The acting in this play was exceptional."

test_X = vectorizer.transform([test_text])

predicted_label = clf.predict(test_X)



print(f"文本: {test_text}")

print(f"预测标签: {predicted_label}")

在上述代码中,使用了库scikit-learn中的CountVectorizer进行文本特征提取,并使用MultinomialNB实现了朴素贝叶斯分类器。通过将训练好的模型应用于新的文本,可以进行分类和标签提取。 执行后会输出:

文本: The acting in this play was exceptional.

预测标签: ['Positive']

2. 支持向量机(Support Vector Machines,SVM)

支持向量机是一种强大的文本分类算法,可以通过构建高维特征空间并找到最佳的分割超平面来实现分类。SVM在文本分类中的应用主要包括线性支持向量机(Linear SVM)和核支持向量机(Kernel SVM)。核函数可以帮助SVM处理非线性问题,如径向基函数核(Radial Basis Function Kernel)。下面是一个简单的实例,演示了使用支持向量机实现音乐推荐的文本分类的用法。使用音乐的特征描述作为模型的输入,并将音乐的推荐标签作为目标变量进行训练。

源码路径:daima/2/xiang.py

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score



# 音乐数据

music_features = [

    "This song has a catchy melody and upbeat rhythm.",

    "The lyrics of this track are deep and thought-provoking.",

    "The vocals in this album are powerful and emotional.",

    "I don't like the repetitive beats in this song.",

]



# 推荐标签数据

recommendations = ['Pop', 'Indie', 'Rock', 'Electronic']



# 对音乐特征进行文本特征提取

vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(music_features)



# 创建支持向量机分类器模型并训练

clf = SVC()

clf.fit(X, recommendations)



# 进行音乐推荐

test_music = "I love the electronic beats in this track."

test_X = vectorizer.transform([test_music])

predicted_recommendation = clf.predict(test_X)



print(f"音乐特征: {test_music}")

print(f"推荐标签: {predicted_recommendation}")

在上述代码中,使用了库scikit-learn中的TfidfVectorizer来提取音乐特征的文本表示,然后使用SVC来构建支持向量机分类器模型,并进行音乐推荐的标签预测。你可以根据实际情况调整训练数据和测试数据,并使用更复杂的特征提取方法和模型调参来提高预测的准确性。执行后会输出:

音乐特征: I love the electronic beats in this track.

推荐标签: ['Electronic']

2.5.2  卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是一种在推荐系统中广泛应用的深度学习模型,它在图像处理任务上取得了巨大的成功,并且在自然语言处理领域也得到了广泛应用。CNN在推荐系统中常用于文本分类、图像推荐和音乐推荐等任务,能够从输入数据中提取特征并进行高效的模式识别。

下面简要介绍CNN在推荐系统中的应用和一些关键概念:

  1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,它通过应用卷积操作来提取输入数据的局部特征。在文本分类任务中,卷积层可以识别关键词组合或短语,捕捉文本中的局部模式。
  2. 池化层(Pooling Layer):池化层用于降低卷积层输出的维度,并保留最重要的特征。常用的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling),它们可以减少数据的大小,并提取最显著的特征。
  3. 全连接层(Fully Connected Layer):全连接层用于将卷积和池化层提取的特征映射到输出标签空间。在推荐系统中,全连接层可以将提取的特征与用户行为数据进行关联,实现个性化推荐。
  4. 嵌入层(Embedding Layer):在文本推荐中,嵌入层将离散的文本输入转换为连续的向量表示。它可以学习单词之间的语义关系,并捕捉文本中的语义信息。
  5. 激活函数(Activation Function):激活函数引入非线性特性,使得CNN能够学习更复杂的模式和特征。常用的激活函数包括ReLU、Sigmoid和Tanh。

在下面的内容中将通过一个具体实例的实现过程详细讲解使用卷积神经网络对花朵图像进行分类的过程让那个。本实例将使用keras.Sequential模型创建图像分类器,并使用preprocessing.image_dataset_from_directory加载数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值