(10-4)优先级遍历(Priority-based Search)算法:Beam Search (束搜索)算法

本文详细介绍了束搜索算法的工作原理,包括基本思想、实现步骤以及在迷宫路径寻找中的应用。通过限制搜索空间的宽度,束搜索提高了搜索效率,但可能影响搜索的完备性。实例展示了如何在给定的二维网格迷宫中使用束搜索算法寻找最短路径。
摘要由CSDN通过智能技术生成

10.4  Beam Search (束搜索)算法

束搜索(Beam Search)是一种启发式搜索算法,通常用于解决搜索空间较大的问题,例如图搜索、自然语言处理中的语言生成等。它在搜索过程中通过限制搜索空间的宽度来降低搜索的复杂度,从而提高搜索效率。

10.4.1  Beam Search算法的基本思想

Beam Search (束搜索)算法的基本思想是维护一个大小固定的束(beam),在每一步中,从当前节点扩展出若干个子节点,并根据一定的评价准则(例如启发函数)选择若干个最有希望的子节点加入束中。然后,再从这些加入束中的子节点中选出下一步要扩展的节点,重复这个过程直到找到目标节点或达到搜索的终止条件。

Beam Search (束搜索)算法与宽度优先搜索类似,但不同之处在于束搜索限制了每一步扩展出的节点数量,而宽度优先搜索则会扩展所有的节点。束搜索通过这种限制来减少搜索空间,提高搜索效率,但同时也可能会牺牲搜索的完备性,因为有些节点可能由于被限制而无法被扩展到。

Beam Search (束搜索)算法的主要优点是在保证一定搜索质量的前提下,降低了搜索的复杂度,适用于那些搜索空间较大但解空间又不太复杂的问题。然而,束搜索也有一些缺点,例如可能会导致搜索结果不够全面,因为束的大小限制了搜索空间的广度。因此,在使用束搜索时需要根据具体问题进行权衡和调整束的大小,以达到较好的搜索效果。

10.4.2  Beam Search算法的实现步骤

实现Beam Search 算法的基本步骤如下所示。

(1)初始化:将起始节点加入束(beam)中,并设置束的大小(即允许同时探索的节点数量)。

(2)实现循环搜索工作:

  1. 从束中选取若干个节点作为当前要扩展的节点。
  2. 对于每个当前节点,根据问题的特性生成其所有可能的后继节点。
  3. 对于每个后继节点,根据一定的评价准则(如启发函数)评估其质量,并选择一定数量的最优节点加入下一轮的束中。
  4. 重复上述步骤,直到达到终止条件(如找到目标节点、束为空、达到最大搜索深度等)。

(3)返回结果:如果找到目标节点,则返回相应的解;否则,返回搜索过程中得到的最优解。

需要注意的是,在实现束搜索时,需要选择合适的评价准则来评估节点的质量,并动态调整束的大小以平衡搜索的广度和深度,从而提高搜索效率。束搜索算法的具体实现可以根据问题的特性进行调整和优化。

请看下面的例子,演示了使用Beam Search算法为迷宫中的机器人寻找最佳路径的过程。

1. 问题描述

假设有一个迷宫,迷宫由一个二维网格表示,其中包含空地和障碍物。现在有一个机器人,初始时位于迷宫的起始点,目标是到达迷宫的终点。机器人只能沿着空地移动,且每次只能向上、向下、向左或向右移动一步。为了尽快到达目标点,我们使用束搜索算法来帮助机器人寻找路径。

迷宫地图如下所示:

vector<vector<int>> grid = {
    {0, 0, 0, 0, 0},
    {0, 1, 1, 1, 0},
    {0, 0, 0, 0, 0},
    {0, 1, 1, 1, 0},
    {0, 0, 0, 0, 0}
};
  1. 起始点:(0, 0)
  2. 目标点:(4, 4)
  3. 束宽度(beamWidth):2。

2. 问题要求

请编写程序,在所提供的迷宫地图中执行束搜索算法,找到从起始点到目标点的路径。在找到路径时,打印输出提示信息。如果机器人无法找到到达目标点的路径,则输出相应的提示信息。

实例10-3使用Beam Search算法为机器人寻找最短路径codes/10/Beam.cpp

实例文件Beam.cpp的具体实现代码如下所示。

#include <iostream>
#include <vector>
#include <queue>
#include <cmath>

using namespace std;

// 定义节点结构体
struct Node {
    int x, y; // 节点坐标
    int distance; // 起点到当前节点的距离
    int heuristic; // 启发式值

    Node(int _x, int _y, int _distance, int _heuristic) : x(_x), y(_y), distance(_distance), heuristic(_heuristic) {}

    // 重载小于运算符,用于优先队列的排序
    bool operator<(const Node& other) const {
        return (distance + heuristic) > (other.distance + other.heuristic);
    }
};

// 定义机器人类
class Robot {
private:
    vector<vector<int>> grid; // 二维网格地图
    int start_x, start_y; // 起始点坐标
    int goal_x, goal_y; // 目标点坐标
    int beamWidth; // 搜索束宽度

public:
    Robot(const vector<vector<int>>& _grid, int _start_x, int _start_y, int _goal_x, int _goal_y, int _beamWidth) : grid(_grid), start_x(_start_x), start_y(_start_y), goal_x(_goal_x), goal_y(_goal_y), beamWidth(_beamWidth) {}

    // 计算启发式值(曼哈顿距离)
    int calculateHeuristic(int x, int y) {
        return abs(x - goal_x) + abs(y - goal_y);
    }

    // 执行束搜索算法
    bool beamSearch() {
        int rows = grid.size();
        int cols = grid[0].size();

        priority_queue<Node> beam; // 搜索束

        // 将起始点加入搜索束
        beam.push(Node(start_x, start_y, 0, calculateHeuristic(start_x, start_y)));

        while (!beam.empty()) {
            // 从搜索束中取出当前要扩展的节点
            vector<Node> currentBeam;
            for (int i = 0; i < beamWidth && !beam.empty(); ++i) {
                currentBeam.push_back(beam.top());
                beam.pop();
            }

            // 对当前节点扩展出所有可能的后继节点
            for (const Node& currentNode : currentBeam) {
                int x = currentNode.x;
                int y = currentNode.y;
                int distance = currentNode.distance;

                // 到达目标点,返回true表示找到路径
                if (x == goal_x && y == goal_y) {
                    cout << "Path found!" << endl;
                    return true;
                }

                // 向上、向下、向左、向右尝试扩展节点
                int dx[] = {-1, 1, 0, 0};
                int dy[] = {0, 0, -1, 1};

                for (int i = 0; i < 4; ++i) {
                    int nx = x + dx[i];
                    int ny = y + dy[i];

                    // 如果新节点在地图范围内且可通行,则加入搜索束
                    if (nx >= 0 && nx < rows && ny >= 0 && ny < cols && grid[nx][ny] == 0) {
                        beam.push(Node(nx, ny, distance + 1, calculateHeuristic(nx, ny)));
                    }
                }
            }
        }

        // 搜索束为空且未找到路径,返回false表示未找到路径
        cout << "No path found." << endl;
        return false;
    }
};

int main() {
    // 定义机器人的起始点、目标点和地图
    vector<vector<int>> grid = {
        {0, 0, 0, 0, 0},
        {0, 1, 1, 1, 0},
        {0, 0, 0, 0, 0},
        {0, 1, 1, 1, 0},
        {0, 0, 0, 0, 0}
    };
    int start_x = 0, start_y = 0;
    int goal_x = 4, goal_y = 4;
    int beamWidth = 2; // 设置束宽度

    // 创建机器人对象并执行束搜索算法
    Robot robot(grid, start_x, start_y, goal_x, goal_y, beamWidth);
    robot.beamSearch();

    return 0;
}

上述代码的实现流程如下所示:

  1. 首先,定义了一个机器人类 Robot,其中包括迷宫地图、起始点、目标点以及搜索束宽度等信息。
  2. 接着,实现了 beamSearch 方法,这是束搜索算法的核心。该算法首先将起始点加入搜索束中,然后不断地从搜索束中取出当前要扩展的节点,将其周围可行的相邻节点加入搜索束中。在这个过程中,搜索束会根据节点的启发式值来自动选择扩展的节点。具体来说,搜索束会维护一个优先队列,队列中的节点按照它们的代价(路径长度加上启发式值)从大到小排序,每次取出队列中代价最小的节点进行扩展。
  3. 然后,通过 calculateHeuristic 方法计算节点的启发式值,这里使用的是曼哈顿距离作为启发式值,曼哈顿距离是从当前节点到目标节点的水平和垂直距离的和。
  4. 最后,在主函数main中创建了一个迷宫地图,设置了起始点、目标点和束的宽度,并创建了一个机器人对象。然后调用机器人对象的 beamSearch 方法执行束搜索算法,寻找从起始点到目标点的路径。如果找到路径,则输出路径信息;否则,输出提示信息表示未找到路径。

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值