10.4 Beam Search (束搜索)算法
束搜索(Beam Search)是一种启发式搜索算法,通常用于解决搜索空间较大的问题,例如图搜索、自然语言处理中的语言生成等。它在搜索过程中通过限制搜索空间的宽度来降低搜索的复杂度,从而提高搜索效率。
10.4.1 Beam Search算法的基本思想
Beam Search (束搜索)算法的基本思想是维护一个大小固定的束(beam),在每一步中,从当前节点扩展出若干个子节点,并根据一定的评价准则(例如启发函数)选择若干个最有希望的子节点加入束中。然后,再从这些加入束中的子节点中选出下一步要扩展的节点,重复这个过程直到找到目标节点或达到搜索的终止条件。
Beam Search (束搜索)算法与宽度优先搜索类似,但不同之处在于束搜索限制了每一步扩展出的节点数量,而宽度优先搜索则会扩展所有的节点。束搜索通过这种限制来减少搜索空间,提高搜索效率,但同时也可能会牺牲搜索的完备性,因为有些节点可能由于被限制而无法被扩展到。
Beam Search (束搜索)算法的主要优点是在保证一定搜索质量的前提下,降低了搜索的复杂度,适用于那些搜索空间较大但解空间又不太复杂的问题。然而,束搜索也有一些缺点,例如可能会导致搜索结果不够全面,因为束的大小限制了搜索空间的广度。因此,在使用束搜索时需要根据具体问题进行权衡和调整束的大小,以达到较好的搜索效果。
10.4.2 Beam Search算法的实现步骤
实现Beam Search 算法的基本步骤如下所示。
(1)初始化:将起始节点加入束(beam)中,并设置束的大小(即允许同时探索的节点数量)。
(2)实现循环搜索工作:
- 从束中选取若干个节点作为当前要扩展的节点。
- 对于每个当前节点,根据问题的特性生成其所有可能的后继节点。
- 对于每个后继节点,根据一定的评价准则(如启发函数)评估其质量,并选择一定数量的最优节点加入下一轮的束中。
- 重复上述步骤,直到达到终止条件(如找到目标节点、束为空、达到最大搜索深度等)。
(3)返回结果:如果找到目标节点,则返回相应的解;否则,返回搜索过程中得到的最优解。
需要注意的是,在实现束搜索时,需要选择合适的评价准则来评估节点的质量,并动态调整束的大小以平衡搜索的广度和深度,从而提高搜索效率。束搜索算法的具体实现可以根据问题的特性进行调整和优化。
请看下面的例子,演示了使用Beam Search算法为迷宫中的机器人寻找最佳路径的过程。
1. 问题描述
假设有一个迷宫,迷宫由一个二维网格表示,其中包含空地和障碍物。现在有一个机器人,初始时位于迷宫的起始点,目标是到达迷宫的终点。机器人只能沿着空地移动,且每次只能向上、向下、向左或向右移动一步。为了尽快到达目标点,我们使用束搜索算法来帮助机器人寻找路径。
迷宫地图如下所示:
vector<vector<int>> grid = {
{0, 0, 0, 0, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 0, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 0, 0}
};
- 起始点:(0, 0)
- 目标点:(4, 4)
- 束宽度(beamWidth):2。
2. 问题要求
请编写程序,在所提供的迷宫地图中执行束搜索算法,找到从起始点到目标点的路径。在找到路径时,打印输出提示信息。如果机器人无法找到到达目标点的路径,则输出相应的提示信息。
实例10-3:使用Beam Search算法为机器人寻找最短路径(codes/10/Beam.cpp)
实例文件Beam.cpp的具体实现代码如下所示。
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
// 定义节点结构体
struct Node {
int x, y; // 节点坐标
int distance; // 起点到当前节点的距离
int heuristic; // 启发式值
Node(int _x, int _y, int _distance, int _heuristic) : x(_x), y(_y), distance(_distance), heuristic(_heuristic) {}
// 重载小于运算符,用于优先队列的排序
bool operator<(const Node& other) const {
return (distance + heuristic) > (other.distance + other.heuristic);
}
};
// 定义机器人类
class Robot {
private:
vector<vector<int>> grid; // 二维网格地图
int start_x, start_y; // 起始点坐标
int goal_x, goal_y; // 目标点坐标
int beamWidth; // 搜索束宽度
public:
Robot(const vector<vector<int>>& _grid, int _start_x, int _start_y, int _goal_x, int _goal_y, int _beamWidth) : grid(_grid), start_x(_start_x), start_y(_start_y), goal_x(_goal_x), goal_y(_goal_y), beamWidth(_beamWidth) {}
// 计算启发式值(曼哈顿距离)
int calculateHeuristic(int x, int y) {
return abs(x - goal_x) + abs(y - goal_y);
}
// 执行束搜索算法
bool beamSearch() {
int rows = grid.size();
int cols = grid[0].size();
priority_queue<Node> beam; // 搜索束
// 将起始点加入搜索束
beam.push(Node(start_x, start_y, 0, calculateHeuristic(start_x, start_y)));
while (!beam.empty()) {
// 从搜索束中取出当前要扩展的节点
vector<Node> currentBeam;
for (int i = 0; i < beamWidth && !beam.empty(); ++i) {
currentBeam.push_back(beam.top());
beam.pop();
}
// 对当前节点扩展出所有可能的后继节点
for (const Node& currentNode : currentBeam) {
int x = currentNode.x;
int y = currentNode.y;
int distance = currentNode.distance;
// 到达目标点,返回true表示找到路径
if (x == goal_x && y == goal_y) {
cout << "Path found!" << endl;
return true;
}
// 向上、向下、向左、向右尝试扩展节点
int dx[] = {-1, 1, 0, 0};
int dy[] = {0, 0, -1, 1};
for (int i = 0; i < 4; ++i) {
int nx = x + dx[i];
int ny = y + dy[i];
// 如果新节点在地图范围内且可通行,则加入搜索束
if (nx >= 0 && nx < rows && ny >= 0 && ny < cols && grid[nx][ny] == 0) {
beam.push(Node(nx, ny, distance + 1, calculateHeuristic(nx, ny)));
}
}
}
}
// 搜索束为空且未找到路径,返回false表示未找到路径
cout << "No path found." << endl;
return false;
}
};
int main() {
// 定义机器人的起始点、目标点和地图
vector<vector<int>> grid = {
{0, 0, 0, 0, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 0, 0},
{0, 1, 1, 1, 0},
{0, 0, 0, 0, 0}
};
int start_x = 0, start_y = 0;
int goal_x = 4, goal_y = 4;
int beamWidth = 2; // 设置束宽度
// 创建机器人对象并执行束搜索算法
Robot robot(grid, start_x, start_y, goal_x, goal_y, beamWidth);
robot.beamSearch();
return 0;
}
上述代码的实现流程如下所示:
- 首先,定义了一个机器人类 Robot,其中包括迷宫地图、起始点、目标点以及搜索束宽度等信息。
- 接着,实现了 beamSearch 方法,这是束搜索算法的核心。该算法首先将起始点加入搜索束中,然后不断地从搜索束中取出当前要扩展的节点,将其周围可行的相邻节点加入搜索束中。在这个过程中,搜索束会根据节点的启发式值来自动选择扩展的节点。具体来说,搜索束会维护一个优先队列,队列中的节点按照它们的代价(路径长度加上启发式值)从大到小排序,每次取出队列中代价最小的节点进行扩展。
- 然后,通过 calculateHeuristic 方法计算节点的启发式值,这里使用的是曼哈顿距离作为启发式值,曼哈顿距离是从当前节点到目标节点的水平和垂直距离的和。
- 最后,在主函数main中创建了一个迷宫地图,设置了起始点、目标点和束的宽度,并创建了一个机器人对象。然后调用机器人对象的 beamSearch 方法执行束搜索算法,寻找从起始点到目标点的路径。如果找到路径,则输出路径信息;否则,输出提示信息表示未找到路径。