11.2 系统模块
通过市场调研和需求分析设计,总结出本项目的功能模块如下所示。
1. 数据获取与清洗
- 从电影数据库中获取大规模电影数据,包括电影特征、用户评分等。
- 对数据进行清洗,处理缺失值和异常值,确保数据质量。
2. 数据分析与可视化
- 通过数据探索性分析,了解电影数据的分布、用户行为等。
- 使用可视化工具,如Matplotlib和Seaborn,展示数据的统计信息和趋势。
3. 特征工程
提取关键特征,如电影语言、演员、制片公司等,用于后续建模和分析。
4. 基于统计的推荐系统
- 利用传统的协同过滤和内容过滤算法,为用户提供个性化的电影推荐。
- 考虑用户的历史行为和电影特征,预测用户可能喜欢的电影。
5. 深度学习推荐系统
- 使用TensorFlow Recommenders (TFRS)构建深度学习推荐系统。
- 结合隐式信号(电影观看记录)和显式信号(用户评分)进行预测,提高推荐准确性。
6. 综合推荐系统
- 将基于统计的和深度学习的推荐系统输出进行综合,构建更全面的推荐系统。
- 综合考虑用户的不同偏好和行为,提供更准确的推荐结果。
7. 用户体验分析
- 对特定用户的历史观影记录进行深入分析,了解其喜好和评分习惯。
- 通过挖掘用户信息,提供更个性化的推荐解决方案。
通过以上模块的设计和实现,该电影推荐系统实现了一套完整的推荐解决方案,结合了传统的推荐算法和深度学习技术,为用户提供了更为准确和个性化的电影推荐服务。