(17-6-03)检索增强生成(RAG):自定义信息检索器(Retriever)+集成检索器

本文介绍了如何在LangChain中使用自定义检索器CustomRetriever,包括其基本结构和关键方法,以及如何通过EnsembleRetriever实现检索器的集成,提升文档检索的准确性和效率。着重讨论了异步支持和结合不同检索器技术的应用,如BM25和FAISS的实例。
摘要由CSDN通过智能技术生成

5.6.5  自定义信息检索器(Retriever)

在LangChain中,自定义检索器(Custom Retriever)是一种强大的工具,它允许开发者创建专门针对特定数据源或需求的检索逻辑。检索器的主要作用是根据用户的查询从外部数据源检索相关的文档列表,这些检索到的文档通常会被格式化成提示(prompts),然后输入到大型语言模型(LLM)中,以便LLM可以使用这些信息来生成适当的响应(例如,基于知识库回答用户问题)。

要创建自定义的检索器,需要扩展类BaseRetriever并实现以下方法:

(1)方法_get_relevant_documents:用于获取与查询相关的文档&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值