经典双塔模型:微软DSSM模型(Deep Structured Semantic Models)

前言
写在前面:这是一篇和原论文关系不大的博客
(大家如果有兴趣看原始论文,可以先看完原始论文后,再来看本博客),

基本上是基于个人在工作实践中的经验以及思考写成的一篇关于DSSM的博客,

先定基调:DSSM主要用在召回和粗排阶段。

DSSM全称Deep Structured Semantic Models,
是伊利诺伊大学厄巴纳-香槟分校(UIUC)与微软于2013年发表在CIKM上的,
盲猜是一作在微软实习时的工作,所以基本上是微软的成果。

DSSM在业界搜广推的影响力目前来说是超过前面介绍的任何一个模型,
基本上统治了召回/粗排阶段。

值得一提的是我厂(百度)同样在2013年(那个年头的百度还处在如日中天的状态)
搞了个双塔模型simnet,不过并没有发表相应的论文,

具体可以参见:百度NLP | 神经网络语义匹配技术,这也符合百度一向喜欢掖着藏着的风格。

这篇博客将会从以下几个方面进行介绍DSSM:

推荐中DSSM双塔模型结构
DSSM用于召回
2.1. DSSM召回离线训练
2.2. DSSM召回在线infer
DSSM用于粗排
总结

就是典型的双塔模型呗,我之前花费了太多心思将双塔模型的

一、推荐中DSSM双塔模型结构

这里直接上一个我画的图,相比较原始论文,
这个图更能表示在推荐领域中的DSSM结构,如下图所示:

模型结果非常简单,主要包括两部分:
user侧一个塔,item侧一个塔。

user侧特征和item侧特征分别经过各自的DNN
(一般情况下,两个DNN结构是一样的,当然也可以不一样)
后得到user embedding和item embedding,
这里需要注意的是如果你的user dnn和item dnn结构不一样,
请务必保证输出维度一样,
也就是最后一层全连接层隐藏单元个数相同,

需要保证user embedding和item embedding的维度相同,
因为下一步要做相似度计算(常用内积或者cosine)。

损失函数部分则是常用的二分类交叉熵损失,
y_true为真实label 0或者1,y_pred为相似度结果。

对于有经验的常年沉溺于挖特征(99%推荐/广告算法工程师的现状)的老司机,
应该可以一眼就看出DSSM模型的缺点:无法使用user#item的交叉特征。

因为召回要求速度快,只做后期特征融合,交互的话,就炸了,那得精排才行

这个问题我们在后面再探讨。

二、DSSM用于召回
现在工业界的推荐系统的召回阶段基本上多路召回,
比如CF召回、CB召回、语义向量召回等,

可参见我关于推荐系统的第博客:【1】–【10】

DSSM召回也是语义向量召回(双塔模型)的一种,先来看离线部分如何训练DSSM模型。

2.1、DSSM召回离线训练
DSSM离线训练和普通的DNN训练并没有什么大的区别,
只是需要把特征分为user侧特征和item侧特征,
并且无法使用user-item的交叉特征。

在之前博客里,我曾提到过:
如果精排是特征的艺术,那么召回就是样本的艺术。

对于DSSM召回的样本,正样本没什么好说的,就是用户点击的item,
那么对于负样本呢?

对于没什么经验的算法工程师,最常见的错误就是负样本直接用曝光未点击的item。
这会直接导致SSB问题,即样本选择偏差问题(sample selection bias),
原因很简单,召回在线的时候是从全量候选item中召回,而不是从有曝光的item中召回。
【这块的知识我已经在博客【9】里面透彻想过这个问题的,你不妨去看看】

召回负样本构造是一门学问,
常见的负样本构造方法有(摘自张俊林大佬文章,SENet双塔模型:
在推荐领域召回粗排的应用及其它,关于负样本构造方法总结的非常棒):

曝光未点击数据【适用于排序】
导致Sample Selection Bias问题的原因。
我们的经验是,这个数据还是需要的,只是要和其它类型的负例选择方法,
按照一定比例进行混合,来缓解Sample Selection Bias问题。
当然,有些结论貌似是不用这个数据,所以用还是不用,可能跟应用场景有关。

全局随机选择负例【适用于召回】
就是说在原始的全局物料库里,随机抽取做为召回或者粗排的负例。
这也是一种做法,Youtube DNN双塔模型就是这么做的。

从道理上讲,这个肯定是完全符合输入数据的分布一致性的,
但是,一般这么选择的负例,因为和正例差异太大,导致模型太好区分正例和负例,
所以模型能学到多少知识是成问题的。

Batch内随机选择负例【很少】
训练的时候,在Batch内,选择除了正例之外的其它Item,做为负例。
这个本质上是:给定用户,在所有其它用户的正例里进行随机选择,构造负例。
它在一定程度上,也可以解决Sample Selection Bias问题。
比如Google的双塔召回模型,就是用的这种负例方法。

曝光数据随机选择负例【困难负样本了】
在给所有用户曝光的数据里,随机选择做为负例。这个我们测试过,在某些场景下是有效的。

基于Popularity随机选择负例
全局随机选择,但是越是流行的Item,越大概率会被选择作为负例。【避免过热的东西影响】
目前不少研究证明了,负例采取Popularity-based方法,对于效果有明显的正面影响。
它隐含的假设是:如果一个例子越流行,那么它没有被用户点过看过,
说明更大概率,对当前的用户来说,它是一个真实的负例。
同时,这种方法还会打压流行Item,增加模型个性化程度。

基于Hard选择负例【排序】
它是选择那些比较难的例子,做为负例。
因为难区分的例子,很明显给模型带来的loss和信息含量比价多,所以从道理上讲是很合理的。
但是怎样算是难的例子,可能有不同的做法,有些还跟应用有关。
比如Airbnb,还有不少工作,都是在想办法筛选Hard负例上。

他在新浪微博的实践经验(直接copy大佬原话):
以上是几种常见的在召回和粗排阶段选择负例的做法。

我们在模型召回阶段的经验是:比如在19年年中左右,我们尝试过选择1+选择3的混合方法,
就是一定比例的“曝光未点击”和一定比例的类似Batch内随机的方法构造负例,
当时在FM召回取得了明显的效果提升。

但是在后面做双塔模型的时候,貌似这种方法又未能做出明显效果。

具体就看你怎么调参了

2.2、 DSSM召回在线infer
提到召回必然面对一个问题:
如何在全量候选item中选出用户最喜欢的topX个,也就必然涉及到效率问题。

离线训练尚可不太考虑效率问题,当然训练时间越短模型更新越及时,则更好,
但对训练时间的容忍度相对较高。

但在线infer时对耗时有着严格的要求,效率就必须是首先要面对的问题。

DSSM之所以能够在工业界这么流行,就是因为其双塔结构能够做到非常好的解耦,
即训练好后user侧塔和item侧塔完全没关系,没有依赖关系。

因为百度在AI算法这一块还是有不错的技术积累,
因此有一套非常成熟好用的基建,
从日志收集传输、特征抽取框架、模型训练部署框架、embedding向量存储、在线infer等非常齐全。

所以我们在线部署DSSM的时候选择了比较奢侈的方法:
item侧塔和user侧塔都部署到线上,
有个server会每间隔几个小时就请求item塔,
计算出全量item的embedding向量,然后存储更新。

当每个用户请求到达时**,会请求user塔计算出user的embedding向量**,
然后拿着这个user向量去做item库里做ANN检索选出相似度最大的topX个ietm。

关于ANN检索技术比较有很多,比如:kd树、Annoy、HNSW等,【最近邻我在上面的博客里面也说过,你看看【7】】
Facebook开源了ANN库FAISS,国内很多公司在用,百度则有自己的一套ANN检索框架。

看到这里,你应该已经明白为什么DSSM无法使用user#item的交叉特征了。

三、DSSM用于粗排
DSSM也可以用于粗排,整体上和召回差不多。区别点有以下几个方面:

在线infer时候选集不同: 召回时是整个item池子,粗排时则是多路召回后的候选item。

训练样本不一样: 为了发扬精排干啥粗排干啥的精神,
在我们自己的实践中,负样本用的和精排一样,都是曝光未点击的item。

如果召回的DSSM模型和粗排的DSSM模型,
在特征、样本都一样的情况下,则DSSM召回的item大部分都会被粗排排出去,
注意这里是大部分,从我们的实践中大概有一半的会被排出去,
至于为什么没有全部都被排出去,原因应该是数据中存在multi-view,
即使特征、样本、网络结构都一样,只要参数初始化是随机的,网络最终也会学到不同的view。

四、总结
DSSM因为其双塔能够解耦的特点迅速在业界得到了广泛的应用,当然其也存在一些缺点,比如:

user侧和item侧特征无法交叉,有一些工作尝试了一些解决方案,
比如:新浪微博张俊林尝试了SENet,
美团发表了论文 A Dual Augmented Two-tower Model for Online Large-scale Recommendation
【下一篇博客我可以考虑讲一下它】

我们自己在实践中发现,DSSM召回的内容单一性比较严重,大多数都是同类别的,
不知道有没有其他小伙伴遇到,可以贴出解决方案。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值