自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 ChatGPT-4、ChatGPT-4-turbo (4-o)与ChatGPT o1-preview的对比

ChatGPT o1-preview:综合了 ChatGPT-4 的高推理能力和 4-turbo 的高效率,适合多种场景,尤其是在多任务处理、长上下文对话、复杂任务生成中表现出色,可以用于更复杂的交互式应用场景。ChatGPT o1-preview:结合了 GPT-4 的推理能力和 4-turbo 的高效性,能够处理复杂任务,具备长上下文处理和多任务处理能力,适合需要快速响应和高复杂度场景的应用。ChatGPT-4-turbo (4-o):推理能力依然出色,但相比标准的 GPT-4,稍有简化。

2024-10-11 09:56:08 478

原创 Global Outer-Urban Navigation with OpenStreetMap---使用OpenStreetMap进行全球市郊导航

使用OpenStreetMap进行全球市郊导航本文提出了一种使用OpenStreetMap数据进行自主机器人导航的概率方法。该方法将机器人基于3D LiDAR数据检测到的轨迹与OpenStreetMap中的轨迹相结合。它结合了从3D-LiDAR数据中提取的语义地形信息,以及马尔可夫链蒙特卡洛技术,以匹配来自OpenStreetMap的轨迹和传感器数据。这使我们的机器人能够使用OpenStreetMap进行导航规划,并在执行这些计划时仍然保持在小街道、土路和森林道路上。我们展示了在真实世界环境中进行的广泛实

2024-10-10 15:11:04 674

原创 道路点云分割+边界提取+中心线方法总结

激光雷达数据的模糊聚类激光雷达获取的道路数据通常包含道路表面和非道路表面的高度差异。因此,首先根据模糊推理机制,基于最大熵原理对单条激光雷达扫描线中的点进行聚类。每条扫描线通常会包含道路区域和非道路区域,算法假设这些区域存在高度跳跃变化。通过对这些变化的分析,激光雷达数据可以被分割为多个聚类。线性拟合聚类完成后,算法会使用线性拟合技术拟合每个聚类段的数据,从而抽象出属于道路表面的直线段。在拟合时,如果某段数据的点数较少(如少于3个点),则忽略该段数据,因为这可能是噪声或误检。

2024-10-08 17:31:10 795

原创 基于3D点云的道路边界提取与矢量化

为了满足道路管理、智能交通系统、道路安全评估和交通事故分析等众多地理空间应用的迫切需求,自动且精确地从点云中提取三维道路及其相关几何参数正受到广泛关注。本文提出了一种精确的三维道路边界提取和矢量化方法,以解决从非结构化的移动激光扫描(MLS)点云到基于矢量的道路边界表示的转换问题。首先,我们提出了一种超体素生成方法,能够在保持细致边界的同时高效地提取候选路缘。然后,使用收缩距离聚类策略将候选的路缘超体素识别并聚类为连续的道路边界段。最后,通过对提取的道路边界段进行拟合、跟踪和补全。

2024-10-08 15:21:41 1168

原创 点云自适应双边滤波算法

该代码的数学原理主要涉及点云的法向量估计、法向离群点检测,以及自适应双边滤波。自适应双边滤波结合空间距离和法向量差异来平滑点云数据,保留几何细节的同时去除噪声。法向量估计通过邻域的协方差矩阵和奇异值分解,得到每个点的法向量。法向离群点检测通过法向量差异检测出局部的异常点。

2024-10-05 17:29:15 334

原创 osm基本数据结构的定义

定义了一个名为 “周李家浜” 的公交车站,包括两个节点,一个表示公交车的停靠位置,另一个表示站台。此外,文件通过关系将这些节点组合起来,形成一个完整的公交站区域

2024-10-05 17:04:53 530

原创 OSM数据结构

OpenStreetMap(简称 OSM)是一个免费、开放的地理数据库。OSM 项目旨在收集有关世界各地静止物体的数据,包括基础设施和建筑环境的其他方面、兴趣点、土地利用和土地覆被分类以及地形。地图要素的比例范围从国际边界到超本地细节,例如商店和街道设施。地图数据通过实地调查、个人知识、图像数字化以及政府数据进行收集。

2024-10-05 00:48:17 727

原创 ubuntu20.04 安装JOSM

需要科学上网,这里没提供方法,建议离线下载数据,然后导入到软件中。

2024-10-04 15:58:38 213

翻译 RoadNet: Learning to Comprehensively Analyze Road Networks in Complex Urban Scenes from High-Resolut

遥感道路、道路边界与道路中心线提取

2023-12-18 15:33:02 269 2

原创 车辆运动与路径跟踪模型

四轮自动果园车车辆运动与跟踪模型

2023-09-05 17:26:00 146 1

这个代码的主要作用是加载带有标签的点云数据,提取每个类别的边界,并可视化点云和边界 它适用于处理以 XYZL(包含三维坐标 XY

这个代码的主要作用是加载带有标签的点云数据,提取每个类别的边界,并可视化点云和边界。它适用于处理以 XYZL(包含三维坐标 XYZ 和类别标签 L)格式存储的点云数据,具体功能包括: 1. 加载点云数据 通过 load_point_cloud_with_labels 函数,从文件中读取点云数据,文件中每行包含三维点坐标 (X, Y, Z) 和一个类别标签 (L)。 返回的结果是一个包含点云坐标和相应类别标签的数组。 2. 提取边界 通过 extract_boundary_using_convex_hull 函数,利用几何算法(凸包算法)来提取每个类别点云的边界。凸包是指包含点云的最小凸形边界。 提取到的边界点被转换为线条(LineSet),用于可视化。 3. 可视化每个类别的点云和边界 通过 visualize_class 函数,对于每个类别,将该类别的点云和对应的边界(凸包)在窗口中显示出来。 点云用灰色显示,边界用红色显示。可视化时,会暂停,等待用户按回车键,以逐步展示不同类别的数据。 4. 逐类处理 在 main 函数中,代码首先加载点云数据,然后遍历点云中的每一个类别。 针对

2024-10-13

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、计算法向量和曲率、基于法向量和曲率进行过滤,以及保存过滤后的点云

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、计算法向量和曲率、基于法向量和曲率进行过滤,以及保存过滤后的点云数据。下面是代码的逐行解释: 导入必要的库: numpy:用于数值计算。 open3d:用于3D数据处理和可视化。 定义函数load_xyzl(filename): 从TXT文件中加载点云数据,假设数据格式为XYZL(X, Y, Z坐标和标签)。 使用numpy.loadtxt函数加载数据,并提取XYZ坐标和标签。 定义函数estimate_normals(pcd): 为Open3D点云对象计算法向量。 使用KDTreeSearchParamHybrid参数来估计法向量,并确保法向量方向一致。 定义函数compute_curvature(pcd): 计算点云的曲率。 对每个点,找到其15个最近邻点,计算协方差矩阵,然后计算特征值来得到曲率。 定义函数filter_points(points, labels, normals, curvatures, normal_threshold, curvature_threshold): 基于法向量和曲率对点

2024-10-10

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、使用DBSCAN算法进行聚类、可视化聚类结果,以及绘制K距离图来

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、使用DBSCAN算法进行聚类、可视化聚类结果,以及绘制K距离图来帮助确定DBSCAN算法中的eps参数。下面是代码的逐行解释: 导入必要的库: os:用于操作系统功能。 numpy:用于数值计算。 open3d:用于3D数据处理和可视化。 sklearn.cluster.DBSCAN:用于DBSCAN聚类。 sklearn.neighbors.NearestNeighbors:用于计算最近邻。 matplotlib.pyplot:用于绘图。 定义函数load_point_cloud_from_txt(file_path): 从TXT文件中加载点云数据,假设数据格式为XYZL(X, Y, Z坐标和标签)。 使用numpy.loadtxt函数加载数据,并提取XYZ坐标和标签。 定义函数cluster_point_cloud(points, eps, min_samples): 使用DBSCAN算法对点云数据进行聚类。 eps是邻域半径,min_samples是邻域内最小样本数。 定义函数visualize_cluste

2024-10-10

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、按X坐标划分点云、进行直线和曲线拟合以及可视化结果

这段代码是一个Python脚本,用于处理点云数据,包括加载数据、按X坐标划分点云、进行直线和曲线拟合以及可视化结果。下面是代码的逐行解释: 导入必要的库: numpy:用于数值计算。 matplotlib.pyplot:用于绘图。 sklearn.linear_model.LinearRegression:用于线性回归。 scipy.interpolate:用于曲线拟合。 定义函数load_xyzl_point_cloud(file_path): 读取指定路径的txt文件,该文件包含点云数据(假设格式为XYZL,即X, Y, Z坐标和强度)。 使用numpy.loadtxt函数加载数据并返回。 定义函数split_point_cloud_into_intervals(point_cloud, num_intervals): 根据点云的X坐标将其划分为指定数量的区间。 使用numpy.linspace生成区间边界。 遍历每个区间,筛选出落在该区间内的点云数据。 定义函数fit_line(points): 对给定的点集进行直线拟合。 使用LinearRegression模型计算斜

2024-10-10

三维点云提取边缘点-根据协方差矩阵的特征值计算表面变化率

这段代码是一个Python脚本,用于从文本文件中加载点云数据,提取边缘点,并使用Open3D库进行可视化。以下是代码的主要功能和步骤: 加载点云数据:load_point_cloud_from_txt 函数从指定的文本文件中读取点云数据,只提取每个点的前三个值(x, y, z)。 计算协方差矩阵:compute_covariance_matrix 函数计算给定点集的协方差矩阵。 计算表面变化率:surface_variation 函数根据协方差矩阵的特征值计算表面变化率。 提取边缘点:extract_edges_from_point_cloud 函数使用K-最近邻算法找到每个点的K个最近邻点,然后计算这些点的协方差矩阵和特征值,根据表面变化率阈值提取边缘点。 可视化:visualize_edges 函数使用Open3D库创建点云对象,并将原始点云设置为灰色,边缘点设置为红色,然后进行可视化。 主函数:main 函数是脚本的入口点,它调用上述函数来加载数据、提取边缘点,并进行可视化。 要运行这个脚本,你需要确保你的环境中安装了numpy、open3d和scikit-lear

2024-10-09

用python裁剪txt的代码

用python裁剪txt的代码

2024-10-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除