道路点云分割+边界提取+中心线方法总结

1.Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks 2017

流程

  1. 点云数据转换为俯视图图像
    从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。
    具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。
    对每个网格单元计算一些基础统计数据,例如:平均高度、平均反射率、点数等。最终生成的俯视图图像会包含这些统计信息。
  2. 构建六通道的俯视图图像
    通过上述统计信息(例如,平均高度、平均反射率等),生成6个不同的俯视图图像,每个图像对应一种统计信息。
    最终将这6个图像作为输入,形成一个六通道的图像输入到全卷积神经网络中。
  3. 全卷积神经网络(FCN)的处理
    FCN架构包含以下几个模块:
    编码器:对输入图像进行下采样,减少特征图的尺寸,从而降低内存需求。
    上下文模块:使用膨胀卷积(dilated convolutions)来获取多尺度的上下文信息,同时保持高分辨率的特征图。这种设计允许网络在不增加参数数量的情况下扩大感受野。
    解码器:使用最大反池化层(max-unpooling)和卷积层来将特征图上采样至输入图像的原始尺寸。
    输出层:输出一个道路置信度图(road confidence map),每个像素值表示对应网格单元属于道路的概率。
  4. 道路检测的输出
    FCN模型输出的是一个道路置信度图,其中每个像素的值表示激光雷达网格单元属于道路的概率。
    通过对该置信度图的进一步处理,生成最终的道路检测结果,能够实时应用于自动驾驶系统。
  5. 模型训练与优化
    使用KITTI数据集中的标注数据进行训练。
    损失函数使用交叉熵损失函数,优化算法为Adam。
    为了提升模型的泛化能力,作者还进行了数据增强(包括对点云数据的旋转和镜像变换)。
  6. 模型评估
    该系统在KITTI道路基准测试集上进行评估,取得了较高的精度和召回率。
    系统的推理时间较短,适合实时应用。
    优缺点:

该方法虽然在LIDAR点云数据的道路检测中表现出色,但仍然存在一些缺点和局限性:

  1. 数据依赖性强
    该方法仅依赖于LIDAR数据来进行道路检测,而不结合其他传感器(如摄像头、雷达等)获取的多模态信息。因此,在某些场景中可能无法充分利用所有可用的信息来提高检测的准确性。例如,在复杂的环境中,单纯使用LIDAR数据可能会导致对道路边界和非道路区域的区分不够精确。
  2. 远距离检测效果不佳
    LIDAR点云的密度会随着距离的增加而下降,这意味着离激光雷达较远的区域点数较少,导致检测精度降低。研究中也指出,在距离激光雷达31米以外时,检测性能逐渐下降。虽然作者建议通过积累多帧点云数据来缓解这个问题,但动态场景中的运动物体会增加累积点云时的误差和不确定性。
  3. 标注数据的局限性
    论文提到使用KITTI数据集中的逆透视映射(IPM)来生成训练数据标注,但这种方法假设道路是平坦且无障碍的,实际情况中这种假设往往不成立。IPM生成的标注数据可能导致道路几何形状和距离的误判,从而影响模型训练的效果。作者指出,使用更精确的标注方法可以提升模型性能。
  4. 复杂场景的误检
    在某些复杂的场景(如路口或人行横道)中,由于道路和非道路区域的边界不清晰,可能会产生误检。例如,当人行道与道路之间的高差较小时,模型容易将这些区域错误标记为可行驶道路。虽然增加训练集中的复杂场景示例可能有所帮助,但在实际应用中可能还需要进一步优化。
  5. 仅限于平面检测
    该方法主要用于检测车辆前方的可行驶道路,并假
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值