摘要
为了满足道路管理、智能交通系统、道路安全评估和交通事故分析等众多地理空间应用的迫切需求,自动且精确地从点云中提取三维道路及其相关几何参数正受到广泛关注。本文提出了一种精确的三维道路边界提取和矢量化方法,以解决从非结构化的移动激光扫描(MLS)点云到基于矢量的道路边界表示的转换问题。首先,我们提出了一种超体素生成方法,能够在保持细致边界的同时高效地提取候选路缘。然后,使用收缩距离聚类策略将候选的路缘超体素识别并聚类为连续的道路边界段。最后,通过对提取的道路边界段进行拟合、跟踪和补全,实现道路边界的矢量化表示,并得出包括边界位置、道路宽度、转弯半径和坡度等几何参数。本文所提出的方法在两个城市和工业区域的大规模数据集上进行了验证。实验结果表明,该方法对不同道路形状和点密度具有较强的鲁棒性,分别在精度和召回率上达到了95.0%和91.0%。
I. 引言
城市道路边界是一种具有高度差的道路对齐方式,存在于行车道与其他功能区域之间。三维道路边界的几何、语义和地形信息,以及相关知识(如语义、拓扑)对于许多地理空间应用至关重要,例如道路资产清单、自定位、车辆导航、自动驾驶、交通事故分析以及交通能耗和排放的分析【1】。详细的道路边界几何和拓扑信息为车辆和行人提供了精确且具有指导意义的路线【2】。例如,针对行动不便的行人和轮椅用户的路径规划需要更详细的障碍物信息和可通行的入口,因为城市场景中的多种元素会干扰可通行路线【3】。此外,道路几何通常用于道路安全评估和更新,以减少交通事故的发生【4】。图1展示了城市场景中各种不同的道路边界。
由于道路边界和几何参数的重要性,分析这些特征将为道路资产管理【5】、安全性提升【6】、便利性【3】和交通场景解释任务【7】提供宝贵的见解。许多研究从不同的细节层次探索和建模了道路廊道,从道路网络到详细的道路边界。遥感数据【8】和众包车辆GPS轨迹【9】被用于获取道路网络地图,在郊区和高速公路场景中表现良好。然而,使用众包数据提取的道路网络缺乏精确的三维道路边界,无法满足某些道路设施管理和安全评估的要求。此外,使用图像进行道路边界提取时,光照不足、恶劣天气和复杂的道路场景都会带来挑战。高楼和树木的遮挡也会严重影响城市区域内边界检测的完整性。
与前面提到的两种数据源不同,激光扫描点云不仅对各种光照和天气条件具有较强的鲁棒性,还能直接高效地获取精确的三维几何信息【10】。使用移动激光扫描(MLS)点云进行道路边界提取的研究已有不少【11】-【14】。然而,大多数现有的研究仍集中在道路或道路边界点的分类上,三维道路边界矢量化仍然需要大量的研究和探索。
为了解决这些关键问题,本文提出了一种结构化的三维道路边界提取和矢量化方法。本文的主要贡献如下:提出了一种超体素操作符,以精确且高效地定位道路边界区域;实现了一种轻量级但精确的三维道路边界矢量化操作符,基于自适应的三次贝塞尔曲线;采用卡尔曼滤波器对缺失的道路边界部分进行跟踪,完成完整的表示。
本文其余部分的结构如下:第II部分主要回顾了与道路边界提取相关的研究。第III部分详细阐述了所提出的方法。实验结果、详细讨论和分析在第IV部分中展示。第V部分对本文进行了总结并展望了未来的工作。