# -*- coding: utf-8 -*-
#Jacobi迭代法 输入系数矩阵mx、值矩阵mr、迭代次数n、误差c(以list模拟矩阵 行优先)
def Jacobi(mx,mr,n=100,c=0.0001):
if len(mx) == len(mr): #若mx和mr长度相等则开始迭代 否则方程无解
x = [] #迭代初值 初始化为单行全0矩阵
for i in range(len(mr)):
x.append([0])
count = 0 #迭代次数计数
while count < n:
nx = [] #保存单次迭代后的值的集合
for i in range(len(x)):
nxi = mr[i][0]
for j in range(len(mx[i])):
if j!=i:
nxi = nxi+(-mx[i][j])*x[j][0]
nxi = nxi/mx[i][i]
nx.append([nxi]) #迭代计算得到的下一个xi值
lc = [] #存储两次迭代结果之间的误差的集合
for i in range(len(x)):
lc.append(abs(x[i][0]-nx[i][0]))
if max(lc) < c:
return nx #当误差满足要求时 返回计算结果
x = nx
count = count + 1
return False #若达到设定的迭代结果仍不满足精度要求 则方程无解
else:
return False
#调用 Jacobi(mx,mr,n=100,c=0.001) 示例
mx = [[8,-3,2],[4,11,-1],[6,3,12]]
mr = [[20],[33],[36]]
print(Jacobi(mx,mr,100,0.00001))
python雅各比
最新推荐文章于 2024-06-17 20:21:44 发布
本文详细介绍了使用Jacobi迭代法求解线性方程组的过程。通过定义输入参数包括系数矩阵、值矩阵、迭代次数及误差限,实现了一个Python函数。该函数能够根据设定的迭代次数和误差限制进行迭代计算,直到找到满足条件的解或达到最大迭代次数。示例展示了如何使用此函数求解特定的线性方程组。
1万+

被折叠的 条评论
为什么被折叠?



