单调函数必有反函数,但为何有反函数的不一定是单调函数

从映射分析:

      存在反函数的函数,定义域到值域是1-1对应或者叫双射。定义域和值域分别为D,B,若对于

x1,x2∈D,x1≠x2,推出f(x1)≠f(x2),f(x1),f(x2)∈B。那么就叫做1-1对应或双射

【注意,这里的集合已经压缩到定义域和值域了,满射就能保证了】。

这样的映射关系,存在一个逆映射,即存在反函数。

(1)单调性到反函数

若函数是单调的,无论是增还是减,都能保证x1,x2∈D,x1≠x2,推出f(x1)≠f(x2),f(x1),f(x2)∈B,因此单调函数存在反函数。
(2)反函数到单调性

       但是反过来:x1,x2∈D,x1≠x2,推出f(x1)≠f(x2),f(x1),f(x2)∈B,能不能推出对于所有的x∈D,存在x1>x2,f(x1)>f(x2),

或f(x1)<f(x2)其中一个呢?不能了。已知x1≠x2,只能确定地得到f(x1)≠f(x2),至于大小关系是无法确定的。

一个基本的例子就是:它有可能是分段函数,且分段函数中有可能存在无定义的点或者无穷的点,那么它就不是单调函数了。


因此,函数单调性是存在反函数的充分非必要条件。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值