差异的多视图聚类

最近几年有很多基于差异化的多视图学习算法被提出,这篇文章主要对这些差异化的算法进行简单的总结。这一块的文章很多,简单列举这些典型的算法。

 

1. Diversity-induced Multi-view Subspace Clustering。 CVPR 2015

这篇文章是目前能看到的第一篇针对于这一任务的文献。

其目标函数很简单:

前两部分很常见,第一个是重构,第二个是图正则。第三部分是差异化度量算法HSIC。

HSIC是从kernel方法推导过来,具体细节可参照相关文献。这是一种常见的差异化策略。

2.Exclusivity-Consistency Regularized Multi-view Subspace Clustering。CVPR 2017

这篇章提出了另一种被广泛采用的差异化度量策略。其目标函数如下:

 前两项是常见的L1正则项,第三项是度量差异化的策略(两个矩阵对应的位置的乘积之和,下面在分析),第四项为谱聚类。

3.Measuring Diversity in Graph Learning: A Unified Framework for Structured Multi-view
Clustering。PAMI 2022

4.Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering    icdm 2019

这篇文章主要的观点异常相似,而且发表时间差异很大。主要的观点是每个视角的图可分为两部分即一致性部分A和噪声部分E。主要的观点是,每个视图的噪声部分应该是有很大差异的(第二项i不等于j);一致性部分应尽量与目标的W一致,噪声的二范数正则(第二项i等于j)。其差异化度量算法与文献2一致。

文章3的目标函数为

 文章4 的目标函数为:

3.Diverse Non-Negative Matrix Factorization for Multiview Data Representation。IEEE TRANSACTIONS ON CYBERNETICS 2018

这篇文章在上一篇博客中已简单论述。前几篇文章主要的目标是学习一个图(即数据点之间的邻接矩阵),这篇文章的算法的目的是学习一个最终的表示。其目标函数为:

 其差异化策略与文献2一致。

下面我们来分析一下这两种不同的策略。

第二种策略来自于

L0不好算,松弛为L1范数。

下面我们从表示的角度来分析这一个差异化的度量准则。 假设H_1,H_2\in R^{d\times N},N表示样本数,d表示得到的维数,那么\sum_iH_i表示为最终的表示。假设利用公式(5)来度量差异化,那么差异化的表示即为:

div = tr(H1*H2^T)+tr(H1*H1^T)+tr(H2*H2^T);

后两项为元素的二范数.我们来分析一下第一项

tr(H_1H_2^T) = \sum_{i=1}^dH_1(i,:)H_2(i,:)^T= \sum_{i,j=1}^dH_1(i,j)H_2(i,j)^T

假设H1(i,j)=0,该度量策略就失效了。因为此时,不论H2(i,j)多大 H1(i,j)H2(i,j)始终等于0。这是我觉得这种方法的缺点和不足,需要进一步的改进。由于这种度量方法效果较好应用的也比较广泛。

第一种策略是从分布的角度来度量相似性。(具体见相关文献)

这种差异化度量策略,是不是可以度量数据之间的相似度呢???答案是肯定的!!!

我们来分析一下下面这篇文章:

GSPL: A Succinct Kernel Model for Group-Sparse Projections Learning of Multiview Data. AAAI 2021

其目标函数如下:

该文章通过HSIC准则来度量映射之后的组合表示于Ug之间的相似性。 

如果Ug=F(标签表示矩阵),那么上式的实际上类似于最大化tr(Sb)。当然我们也可以先优化U,然后优化W,这样可能时间复杂度更高。

原创不易,谢绝转载!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值