1.A study of graph-based system for multi-view clustering
2.Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering
该方法首次将多视图一致性和多视图不一致性在同一的优化模型中明确地表述出来。设计了一种新的交替优化方案,迭代学习每个视图图地一致部分和不一致部分,以及融合所有视图一致部分的统一图。此方案既适用于相似图也适用于不同图,从而产生了两种基于图融合的变体,暨距离(不同)图融合和相似图融合。代码:https://github.com/youweiliang/ConsistentGraphLearninghttps://github.com/youweiliang/ConsistentGraphLearning
3.Consensus guided incomplete multi-view spectral clustering
CGIMVSC视图寻找每个单一视图的局部信息和所有视图共享的语义一致性信息,局部结构从不完整数据中自适应获得而不是通过k近邻预先定义,引入一个共正则化约束去最小化公共表示和单个视图表示之间的不一致性,使所有视图都能获得一致聚类结果。
4.Multi-View Spectral Clustering With Incomplete Graphs
将谱嵌入过程和相似矩阵补全过程相结合,将公共表示矩阵与对应的特定视图表示矩阵相乘,恢复每个相似矩阵的缺失项,然后根据完整的相似矩阵学习这些表示矩阵。
5.A novel consensus lear