通义万相 2.1 携手蓝耘云平台:开启影视广告创意新纪元

在这里插入图片描述
       💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖

在这里插入图片描述

一、欢迎加入【福利社群

点击快速加入: 青云交灵犀技韵交响盛汇福利社群
点击快速加入2: 2024 CSDN 博客之星 创作交流营(NEW)

二、本博客的精华专栏:

  1. 大数据新视界专栏系列:聚焦大数据,展技术应用,推动进步拓展新视野。
  2. Java 大视界专栏系列(NEW):聚焦 Java 编程,细剖基础语法至高级框架。展示 Web、大数据等多领域应用,精研 JVM 性能优化,助您拓宽视野,提升硬核编程力。
  3. Java 大厂面试专栏系列:提供大厂面试的相关技巧和经验,助力求职。
  4. Python 魅力之旅:探索数据与智能的奥秘专栏系列:走进 Python 的精彩天地,感受数据处理与智能应用的独特魅力。
  5. Java 虚拟机(JVM)专栏系列:深入剖析 JVM 的工作原理和优化方法。
  6. Java 学习路线专栏系列:为不同阶段的学习者规划清晰的学习路径。
  7. JVM 万亿性能密码:在数字世界的浩瀚星海中,JVM 如神秘宝藏,其万亿性能密码即将开启奇幻之旅。
  8. AI(人工智能)专栏系列:紧跟科技潮流,介绍人工智能的应用和发展趋势。
  9. 智创 AI 新视界专栏系列(NEW):深入剖析 AI 前沿技术,展示创新应用成果,带您领略智能创造的全新世界,提升 AI 认知与实践能力。
  10. 数据库核心宝典:构建强大数据体系专栏系列:专栏涵盖关系与非关系数据库及相关技术,助力构建强大数据体系。
  11. MySQL 之道专栏系列:您将领悟 MySQL 的独特之道,掌握高效数据库管理之法,开启数据驱动的精彩旅程。
  12. 大前端风云榜:引领技术浪潮专栏系列:大前端专栏如风云榜,捕捉 Vue.js、React Native 等重要技术动态,引领你在技术浪潮中前行。

三、【青云交技术圈福利社群】【架构师社区】的精华频道:

  1. 福利社群:无论你是技术萌新还是行业大咖,这儿总有契合你的天地,助力你于技术攀峰、资源互通及人脉拓宽之途不再形单影只。 点击快速加入福利社群 CSDN 博客之星 创作交流营(NEW)
  2. 今日看点:宛如一盏明灯,引领你尽情畅游社区精华频道,开启一场璀璨的知识盛宴。
  3. 今日精品佳作:为您精心甄选精品佳作,引领您畅游知识的广袤海洋,开启智慧探索之旅,定能让您满载而归。
  4. 每日成长记录:细致入微地介绍成长记录,图文并茂,真实可触,让你见证每一步的成长足迹。
  5. 每日荣登原力榜:如实记录原力榜的排行真实情况,有图有真相,一同感受荣耀时刻的璀璨光芒。
  6. 每日荣登领军人物榜:精心且精准地记录领军人物榜的真实情况,图文并茂地展现,让领导风采尽情绽放,令人瞩目。
  7. 每周荣登作者周榜:精准记录作者周榜的实际状况,有图有真相,领略卓越风采的绽放。

       展望未来,我誓做前沿技术的先锋,于人工智能、大数据领域披荆斩棘。持续深耕,输出独家深度专题,为你搭建通往科技前沿的天梯,助你领航时代,傲立潮头。

       即将开启技术挑战与代码分享盛宴,以创新形式激活社区,点燃技术热情。让思维碰撞,迸发智慧光芒,照亮探索技术巅峰的征途。

       珍视你的每一条反馈,视其为前行的灯塔。精心雕琢博客内容,精细优化功能体验,为你打造沉浸式知识殿堂。拓展多元合作,携手行业巨擘,汇聚海量优质资源,伴你飞速成长。

       期待与你在网络空间并肩同行,共铸辉煌。你的点赞,是我前行的动力;关注,是对我的信任;评论,是思想的交融;打赏,是认可的温暖;订阅,是未来的期许。这些皆是我不断奋进的力量源泉。

       衷心感谢每一位支持者,你们的互动,推动我勇攀高峰。诚邀访问 我的博客主页青云交技术圈福利社群架构师社区 ,如您对涨粉、技术交友、技术交流、内部学习资料获取、副业发展、项目外包和商务合作等方面感兴趣,欢迎在文章末尾添加我的微信名片 QingYunJiao (点击直达) ,添加时请备注【CSDN 技术交流】。更多精彩内容,等您解锁。

       让我们携手踏上知识之旅,汇聚智慧,打造知识宝库,吸引更多伙伴。未来,与志同道合者同行,在知识领域绽放无限光彩,铸就不朽传奇!
在这里插入图片描述


通义万相 2.1 携手蓝耘云平台:开启影视广告创意新纪元

引言

亲爱的 AI 和前沿技术爱好者们,大家好!在数字技术重塑社会的浪潮中,Java 大数据技术始终是推动产业革新的核心引擎。从《Java 大视界 – Java 大数据在智能政务公共服务资源优化配置中的应用(118)》对公共服务资源的精准调配,到《Java 大视界 – 基于 Java 的大数据分布式任务调度系统设计与实现(117)》构建的高效任务处理体系;从《Java 大视界 – Java 大数据在智慧交通信号灯智能控制中的应用(116)》对城市交通的智能革新,到《Java 大视界 – Java 大数据机器学习模型的超参数优化技巧与实践(115)》对数据价值的深度挖掘,Java 技术持续在政务、交通、算法优化等领域书写着创新篇章。

如今,这场技术变革的浪潮正席卷影视广告行业。面对消费者日益增长的创意需求与传统制作模式的效能瓶颈,通义万相 2.1 与蓝耘云平台的深度融合,恰似为行业注入了量子级的创新动能。这个融合了文生视频智能引擎与高性能算力平台的解决方案,不仅延续了 Java 技术在数据处理、分布式计算、机器学习等领域的优势基因,更将这些能力升维应用于创意生产全流程,为影视广告行业带来了从构思到交付的颠覆性变革。

让我们从政务服务的智能调度、交通系统的实时决策、机器学习的参数优化等场景出发,共同见证 Java 大数据技术如何突破创意边界,在影视广告领域谱写新的技术传奇。

在这里插入图片描述

正文

一、前沿洞察:影视广告创意新需求

1.1 创意迭代加速

在信息爆炸的当下,消费者每天被数以千计的广告信息狂轰滥炸,他们的注意力变得像流星般短暂。数据显示,过去几年间,广告主更换创意素材的频率呈几何级数增长。在 2020 年,每季度更换创意素材的广告主比例仅为 35%,而到了去年 2024 年,这一比例飙升至 68%,2025 年 Q1 数据显示,季度素材更换率已达 78%,较 2024 年提升 14 个百分点。这意味着影视广告行业必须像敏捷的猎豹一样,快速产出新颖、独特且能直击消费者内心的创意内容,才能在激烈的竞争中抓住消费者稍纵即逝的注意力。

1.2 传统模式局限

传统的影视广告制作就像一场精心编排但节奏缓慢的舞台剧,每一个环节都需要耗费大量的时间和精力。脚本编写如同在茫茫大海中寻找珍珠,创作者需要深入研究市场、目标受众和品牌特点,反复推敲每一个情节和台词,这个过程往往需要数天甚至数周。分镜设计则像是绘制一幅复杂的地图,要精确规划每个镜头的画面、运镜方式和时长,确保信息准确传达。拍摄阶段更是充满了不确定性,场地的选择、设备的租赁、演员的档期协调,以及天气等不可控因素,都可能让拍摄计划陷入困境。后期剪辑就像拼图游戏,剪辑师要花费大量时间将拍摄的素材进行筛选、拼接、调色和添加特效。以一部 90 秒的品牌广告片为例,从创意构思到最终成片,平均耗时 25 天,成本高达 30 万元。而且,由于现实条件的限制,很多创意无法完美呈现,导致广告效果大打折扣。

1.3 技术变革趋势

人工智能和云计算技术的飞速发展,如同两颗璀璨的星辰,照亮了影视广告行业的未来之路。全球知名的信息技术研究机构 Gartner 预测,到 2026 年,全球 70% 的影视广告制作将借助 AI 技术。AI 就像一个拥有无限创意的智慧大脑,能够通过对海量数据的深度分析和学习,快速捕捉消费者的喜好和市场趋势,为广告创意提供精准的方向。云计算则为 AI 模型的运行提供了强大的动力支持,它就像一个超级能量站,能够在瞬间为复杂的计算任务提供所需的算力,确保 AI 技术在影视广告制作中高效运行。这两大技术的融合,将彻底改变影视广告行业的生产方式和创意格局。

在这里插入图片描述

二、通义万相 2.1:文生视频的智能引擎

通义万相 2.1 是阿里巴巴达摩院研发的一款先进的文生视频智能引擎,它基于先进的 Transformer 架构构建,深度融合多模态感知与生成技术,致力于通过输入文本描述,高效且精准地生成高质量视频内容。其强大的功能为影视广告创意制作带来了革命性的变革,成为影视广告行业创新发展的关键技术支撑。

2.1 技术架构与核心能力

通义万相 2.1 基于先进的 Transformer 架构构建,这一架构就像一座坚固的大厦框架,为模型的强大功能提供了坚实的基础。它融合了多模态感知与生成技术,具备卓越的核心能力。

  • 多模态融合:通过 CLIP 模型,通义万相 2.1 能够像一位全能的翻译官,将文本、图像、音频等多种信息编码到统一的特征空间中。这样一来,模型就能实现深度语义理解与关联,精准地把握用户输入的意图。例如,当用户输入一段描述 “在宁静的海边,夕阳的余晖洒在金色的沙滩上,海浪轻轻拍打着岸边,伴随着海鸥的叫声” 的文本,同时上传一张海边的图片和一段海浪声的音频,模型能够综合这些信息,生成一幅栩栩如生的海边日落视频画面,让观众仿佛身临其境。
import torch
from transformers import CLIPProcessor, CLIPModel

# 加载CLIP模型和处理器
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")

# 输入文本和图像
text = "在宁静的海边,夕阳的余晖洒在金色的沙滩上,海浪轻轻拍打着岸边,伴随着海鸥的叫声"
image = Image.open("seaside.jpg")  # 假设存在一张海边的图片

# 对文本和图像进行编码
inputs = processor(text=text, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)

# 获取文本和图像的特征向量
text_features = outputs.text_embeds
image_features = outputs.vision_embeds

# 这里可以进一步进行特征融合和处理
  • 深度神经网络:通义万相 2.1 采用了拥有 140 亿参数的生成对抗网络(GAN)。GAN 就像一个由生成器和判别器组成的创意团队,生成器负责根据输入的语义信息创造出逼真的视频内容,而判别器则像一位严格的评委,不断判断生成的内容是否真实。通过两者之间的不断对抗和优化,模型逐渐学会了从复杂的语义描述中生成高质量的视频内容。无论是细腻的人物情感表达,还是宏大的场景构建,都能被模型完美呈现。
import torch
import torch.nn as nn

# 定义生成器
class Generator(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.LeakyReLU(0.2),
            nn.Linear(128, 256),
            nn.BatchNorm1d(256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, output_dim),
            nn.Tanh()
        )

    def forward(self, z):
        return self.model(z)

# 定义判别器
class Discriminator(nn.Module):
    def __init__(self, input_dim):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, 512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)

# 初始化生成器和判别器
input_dim = 100
output_dim = 784  # 假设输出是一个28x28的图像
generator = Generator(input_dim, output_dim)
discriminator = Discriminator(output_dim)

# 定义损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))

# 训练过程(简化示例)
for epoch in range(100):
    for real_images in data_loader:
        # 训练判别器
        d_optimizer.zero_grad()
        real_labels = torch.ones((real_images.size(0), 1))
        fake_labels = torch.zeros((real_images.size(0), 1))

        real_output = discriminator(real_images)
        d_real_loss = criterion(real_output, real_labels)

        z = torch.randn((real_images.size(0), input_dim))
        fake_images = generator(z)
        fake_output = discriminator(fake_images.detach())
        d_fake_loss = criterion(fake_output, fake_labels)

        d_loss = d_real_loss + d_fake_loss
        d_loss.backward()
        d_optimizer.step()

        # 训练生成器
        g_optimizer.zero_grad()
        fake_output = discriminator(fake_images)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        g_optimizer.step()

2.2 文生视频生成逻辑与特色功能

2.2.1 生成逻辑

当用户输入文本描述后,通义万相 2.1 就像一位才华横溢的编剧和导演,首先对文本进行细致的语义解析,提取其中的关键信息,构建出一个清晰的情节框架。然后,基于其内部庞大的知识图谱和视觉库,模型就像一个装满宝藏的仓库管理员,根据情节框架挑选出合适的场景、角色和动作元素。最后,通过视频合成模块,将这些元素像拼图一样有机地组合在一起,输出一部连贯、流畅且符合用户描述的精彩视频内容。

2.2.2 特色功能
  • 角色生成:通义万相 2.1 支持高度定制化的角色生成功能,就像一位神奇的造型师,能够根据用户的需求创造出独一无二的角色。用户可以详细描述角色的外貌特征,如身高、体型、肤色、发型等,以及性格特点,如勇敢、温柔、狡黠等,甚至还能指定角色的具体动作,如奔跑、跳跃、战斗等。例如,用户输入 “一位身着黑色披风、眼神冷峻的神秘侠客在古老的城堡中穿梭”,模型就能精准地生成相应的角色形象和动作序列。
# 模拟角色生成函数
def generate_character(description):
    # 这里可以使用更复杂的自然语言处理技术进行解析
    features = {}
    if "身着黑色披风" in description:
        features["clothes"] = "黑色披风"
    if "眼神冷峻" in description:
        features["expression"] = "冷峻"
    if "神秘侠客" in description:
        features["role"] = "神秘侠客"
    if "在古老的城堡中穿梭" in description:
        features["action"] = "在古老的城堡中穿梭"
    return features

description = "一位身着黑色披风、眼神冷峻的神秘侠客在古老的城堡中穿梭"
character = generate_character(description)
print(character)
  • 风格定制:通义万相 2.1 内置了 20 余种丰富多样的艺术风格,就像一个装满各种颜料的调色板,用户可以根据自己的创意需求,一键切换视频的艺术风格。无论是写实风格的逼真还原,还是卡通风格的可爱俏皮,亦或是油画风格的艺术质感,都能轻松实现。在制作一部历史题材的广告时,选择写实风格可以让观众感受到历史的厚重与真实;而制作儿童产品广告时,卡通风格则能吸引孩子们的注意力。

  • 动作设计:借助先进的运动学模型,通义万相 2.1 就像一位专业的舞蹈教练,能够生成自然流畅的人物与物体动作。无论是人物的日常动作,如行走、交谈、微笑,还是复杂的动作,如舞蹈、武术、特技表演,亦或是物体的运动轨迹,如汽车的行驶、飞机的飞行、球体的滚动等,模型都能以逼真的效果呈现,让生成的视频充满生命力。

2.3 性能优势与行业地位

与市场上的同类产品相比,通义万相 2.1 在生成速度、质量和稳定性方面表现卓越,就像一位在赛场上遥遥领先的运动员。在同等硬件条件下,通义万相 2.1 的生成速度提升了 30%。例如,在生成一段时长为 1 分钟的视频时,其他同类产品可能需要 8 分钟,而通义万相 2.1 仅需 5 分钟,大大提高了工作效率。在图像质量方面,其图像质量峰值信噪比(PSNR)提高了 2dB,这意味着生成的视频画面更加清晰、细腻,色彩还原度更高,视觉效果更加出色。在稳定性方面,通义万相 2.1 相比同类产品提升了 50%,能够在长时间的运行过程中保持稳定,减少出错的概率。凭借其卓越的性能,通义万相 2.1 在文生视频领域占据了技术领先地位,目前已经成功服务了超过 500 家影视广告企业,生成的视频总时长超过 10 万小时,赢得了行业内的广泛认可和赞誉。

三、蓝耘云平台:高性能运算的坚实后盾

蓝耘云平台是由深耕云计算领域多年的蓝耘科技全力打造的一站式云计算服务平台。蓝耘科技在云计算基础设施建设、分布式计算技术研发等方面积累了深厚的技术底蕴与行业经验,旗下的蓝耘云平台自推出以来,便凭借其独特优势在影视广告等多个行业崭露头角。

在这里插入图片描述

3.1 硬件设施与算力水平

蓝耘云平台就像一座超级数据中心,配备了先进的 NVIDIA A100、 RTX 4090 等集群,单节点算力高达 5 PetaFLOPS。这强大的算力就像一台马力十足的发动机,能够轻松应对大规模数据处理和复杂运算的需求。无论是进行高清视频的渲染、复杂特效的制作,还是运行大规模的机器学习模型,蓝耘云平台都能快速高效地完成任务。在存储方面,蓝耘云平台采用了分布式 NVMe SSD 存储系统,读写带宽达到了 10GB/s。这就像一个高速的物流通道,能够保障数据的快速读写,大大缩短了数据的传输时间,提高了工作效率。在影视广告制作中,一些需要大量数据处理的场景,如对 4K 高清视频进行特效渲染时,蓝耘云平台的高性能 GPU 集群能够在短时间内完成渲染任务,而传统的本地设备可能需要数倍的时间才能完成同样的工作。

在这里插入图片描述

3.2 软件优化与服务体系

3.2.1 优化运行环境

为了确保通义万相 2.1 能够在蓝耘云平台上高效运行,平台针对通义万相 2.1 定制了 CUDA 12.4 运行环境。通过对内核调度和显存管理的优化,平台就像一位精细的管家,能够更好地分配计算资源,提高模型的运行效率。优化内核调度算法,使得计算任务能够更加合理地分配到各个计算核心上,避免了资源的浪费和冲突;优化显存管理机制,能够更加有效地利用显存空间,减少显存碎片的产生,提高显存的利用率。

import torch

# 模拟显存管理优化
def optimize_memory_usage():
    # 获取当前可用显存
    available_memory = torch.cuda.mem_get_info()[0]
    print(f"当前可用显存: {available_memory} bytes")

    # 假设需要分配一定大小的显存
    required_memory = 1024 * 1024 * 1024  # 1GB
    if available_memory >= required_memory:
        # 分配显存
        tensor = torch.empty((1024, 1024, 1024), dtype=torch.float32).cuda()
        print("成功分配显存")
    else:
        # 显存不足,尝试释放一些显存
        torch.cuda.empty_cache()
        available_memory = torch.cuda.mem_get_info()[0]
        if available_memory >= required_memory:
            tensor = torch.empty((1024, 1024, 1024), dtype=torch.float32).cuda()
            print("释放显存后成功分配显存")
        else:
            print("显存不足,无法分配所需显存")

optimize_memory_usage()
3.2.2 算法加速技术

蓝耘云平台采用了 TensorRT 推理加速引擎,这就像给通义万相 2.1 装上了一对翅膀,能够将模型的推理速度提升 2 倍。TensorRT 推理加速引擎通过对模型的优化和加速,能够减少模型推理过程中的计算量和时间消耗,从而提高模型的运行效率。在实际应用中,原本需要较长时间才能完成的视频生成任务,借助 TensorRT 推理加速引擎,能够在更短的时间内完成,大大提高了工作效率。例如,在生成复杂的特效视频时,使用 TensorRT 推理加速引擎后,通义万相 2.1 能够更快地将文本描述转化为视频内容,使得整个制作周期大幅缩短。

在这里插入图片描述

3.2.3 服务功能
  • 弹性算力调度:蓝耘云平台具备智能的弹性算力调度功能,就像一位灵活的指挥官,能够根据任务的负载情况自动分配和回收算力资源。当任务负载较高时,平台会自动增加算力资源,以确保任务能够快速完成;当任务负载较低时,平台会自动回收多余的算力资源,以避免资源的浪费。这种弹性算力调度功能

能够将资源利用率提升 70%,大大提高了平台的资源利用效率。在影视广告旺季,众多影视制作公司和广告商同时使用蓝耘云平台进行项目制作,平台通过弹性算力调度,为渲染复杂特效场景的任务及时分配更多算力,确保项目按时交付;而在淡季,又能合理回收闲置算力,避免资源浪费。

# 模拟弹性算力调度
import random

# 模拟任务负载
task_load = random.randint(0, 100)

if task_load > 70:
    # 任务负载高,增加算力
    add_gpu_count = 2
    print(f"任务负载高,增加 {add_gpu_count} 个GPU")
elif task_load < 30:
    # 任务负载低,回收算力
    remove_gpu_count = 1
    print(f"任务负载低,回收 {remove_gpu_count} 个GPU")
else:
![Snipaste_2025-03-07_13-25-50](D:\qingyun\Pictures\联想截图\os\蓝耘\Snipaste_2025-03-07_13-25-50.png)    print("任务负载正常,无需调整算力")
  • 资源监控与管理:通过自研的监控平台,蓝耘云平台就像一位 24 小时不间断的守护者,能够实时监测算力、存储和网络的状态。在算力方面,平台能够实时监测 GPU 的使用率、温度、功耗等参数,以便及时发现和解决算力瓶颈问题;在存储方面,平台能够实时监测存储容量、读写速度、数据备份等情况,以确保数据的安全和可靠;在网络方面,平台能够实时监测网络带宽、延迟、丢包率等指标,以保证网络的稳定和畅通。通过实时监测和管理,蓝耘云平台能够及时发现和解决问题,保障服务的稳定运行。例如,当监控平台检测到某一时间段内网络延迟过高,可能影响数据传输速度时,平台会自动调整网络路由,优化数据传输路径,确保数据能够快速、稳定地传输,为通义万相 2.1 的高效运行提供保障。

3.3 蓝耘云平台操作演示

3.3.1 注册与登录:
3.3.1.1 访问蓝耘云官网,在首页找到并点击 “注册” 按钮。在注册页面中,按照要求填写企业或个人的相关信息,包括姓名、联系方式、邮箱、密码等,并确保信息的准确性和完整性。填写完毕后,点击 “提交” 按钮完成注册。

在这里插入图片描述

3.3.1.2 注册成功后,返回官网首页,点击 “登录” 按钮。在登录页面中,输入注册时设置的账号和密码,然后点击 “登录” 按钮即可进入蓝耘云控制台。登录后的控制台界面如下:

在这里插入图片描述

3.3.1.3 小结:注册和登录具体如下图:

在这里插入图片描述

3.3.2 部署:
3.3.2.1 登录成功后,进入控制台页面,然后点击红圈里的“应用市场” 链接,如图:

在这里插入图片描述

3.3.2.2 点击上图红圈中的“市场应用”后,跳转到下图页面,点击左边红圈里的“文字生成视频”(在搜索框搜索:阿里万相也可以),如图:

在这里插入图片描述

3.3.2.3 点击上图红圈中的“文字生成视频”后,跳转到下图页面,点击红圈里的“查看详情”,如图:

在这里插入图片描述

3.3.2.4 进入”详情“页面,然后点击部署,如图:

在这里插入图片描述

3.3.2.5 点击“部署“后进入购买页面,我们按下图选择相关配置,最后点击购买,如图:

在这里插入图片描述

3.3.2.6 阿里通义万相2.1应用购买完成后,从用户发起部署请求到收到成功通知期间,蓝耘云平台将自动完成以下部署流程:
### 阿里云通义2.1 版本特性 阿里云于2025年225日深夜宣布开源视频生成模型通义2.1,此版本提供了两个主要参数规模的选择:文生视频-1.3B和文生视频-14B。这两个版本旨在满足不同的应用场景和技术需求[^1]。 #### 文生视频-1.3B 和 文生视频-14B 的特点 - **文生视频-1.3B**:适合资源有限但希望尝试高质量视频生成的个人开发者或小型团队。 - **文生视频-14B**:针对更复杂、更高精度的任务设计,适用于专业级应用开发以及研究机构。 ### 使用说明 为了方便全球范围内的开发者获取并利用这些先进的技术成果,官方已开放多个平台供下载: - GitHub - Hugging Face - 魔搭社区 用户可以根据自己的偏好选择合适的渠道来访问源码及关文档资料。 对于想要深入了解如何操作该工具的人来说,建议前往[通义官方网站](https://wanxiang.aliyun.com/)进行注册申请账号,并查阅详细的API接口指南和其他支持材料[^2]。 ### 更新内容 此次发布的通义2.1不仅实现了完全开源共享,在性能优化方面也取得了显著进步,具体表现在以下几个方面: - 提升了图像到视频转换的质量; - 增强了自然语言处理能力,使得描述文字能够更加精准地映射成视觉效果; - 改进了多模态融合机制,从而更好地理解输入数据之间的关联性; 此外,还修复了一些之前存在的Bug,并增加了新的功能模块以扩展系统的适用性和灵活性。 ```python import torch from transformers import AutoModelForVideoGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_model") # 替换为实际路径 model = AutoModelForVideoGeneration.from_pretrained("path_to_model") text_input = tokenizer("A beautiful sunset over the ocean", return_tensors="pt") video_output = model.generate(**text_input) print(video_output.shape) # 输出生成视频张量大小 ```
评论 105
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青云交

优质创作不易,期待你的打赏。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值