【Anaconda】anaconda中移除旧环境、增加新环境、查看环境、安装库、清理缓存等操作命令

1.移除旧环境

打开Anaconda Prompt
输入命令查看环境:

 conda env list
 or
 conda info --envs

在这里插入图片描述
可以看到有2个主要环境,base和tensorflow
现在想要移除tensorflow环境,输入以下命令:

conda remove -n tensorflow --all

2.创建新环境

如果需要安装很多packages,你会发现conda下载的速度经常很慢,因为Anaconda.org的服务器在国外。幸运的是,清华镜像源有Anaconda仓库的镜像,我们将其加入conda的配置即可:

#添加Anaconda的清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
#TUNA的help中镜像地址加有引号,需要去掉
#设置搜索时显示通道地址
conda config --set show_channel_urls yes

配置好后,使用conda创建新的虚拟环境:

#创建一个名为tf的3.6环境
#当然,当网络畅通的时候,上面步骤也可以忽略
conda create --name tf python=3.6 # 或者 conda create -n tf python=3.6 

3.切换环境

activate tensorflow就可以切换到tensorflow环境下了:

conda activate tensorflow

4.安装库

使用pip命令进行安装:

pip install numpy==1.12.0 安装指定版本
pip install numpy 默认安装最新版本
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple  # 使用清华镜像安装
 pip install  -i https://mirrors.aliyun.com/pypi/simple/ tensorboard # 使用阿里云镜像安装

使用conda命令进行安装:

conda install numpy

pip 国内源::

百度:https://mirror.baidu.com/pypi/simple  
阿里云 :http://mirrors.aliyun.com/pypi/simple/
中国科技大学: https://pypi.mirrors.ustc.edu.cn/simple/
豆瓣(douban) :http://pypi.douban.com/simple/
清华大学 :https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学: http://pypi.mirrors.ustc.edu.cn/simple/

conda 国内源:

#	查看当前源
conda config --show-sources
#	添加源
#conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  #清华源停服 
# 	腾讯云
conda config --add channels https://mirrors.cloud.tencent.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.cloud.tencent.com/anaconda/pkgs/main/
conda config --set show_channel_urls yes
#	换回默认源
conda config --remove-key channels

5.更新库

更新库的命令:

pip install --upgrade 库的名字
pip install -U numpy # 更新numpy

更新时出现拒绝访问:

pip install --user --upgrade tensorflow-gpu

6.清理anaconda缓存

conda clean -p       # 删除没有用的包 --packages
conda clean -t       # 删除tar打包 --tarballs
conda clean -y --all # 删除所有的安装包及cache(索引缓存、锁定文件、未使用过的包和tar包)

7.其他

本人电脑上的环境:

windows下tensorflow:
numpy=1.15.1
tensorflow=1.10.0
skimage=0.15.0

windows下base:
numpy=1.14.3
skimage=0.13.1

ermissionError: [WinError 5] 拒绝访问。解决办法
https://blog.csdn.net/weixin_43870646/article/details/90020874
pip install --user numpy==1.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

Ubuntu中直接输入spyder启动spyder
启动navigator:anaconda-navigator

opencv 3.4.0安装

pip install opencv-python==3.4.0.12 -i https://pypi.tuna.tsinghua.edu.cn/simple

8.打包所有环境

打包依赖环境:

pip freeze >> requirements.txt

安装依赖环境:

pip install -r  requirements.txt

pytorch离线包:
https://download.pytorch.org/whl/torch_stable.html

离线安装包下载地址:
http://mirrors.aliyun.com/pypi/simple/

安装第三方库,一定要注意,版本之间存在依赖关系:
python版本+依赖库版本(+CUDA版本)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值