快速校验电源中的电感是否会磁饱和

铁氧体磁芯电感

法拉第电磁感应定律的表达式为:V=N\frac{\Delta \phi }{\Delta t}=NS\frac{\Delta B}{\Delta t}

其中磁通量\Phi等于磁感应强度B与面积S的乘积。


自感电动势公式为:V=L\frac{\Delta I}{\Delta t}


联立两式得:\Delta B=\frac{L\Delta I}{NS}


所以我们可以用电感的峰值电流I_{PK }计算出峰值磁感应强度B_{PK}

B_{PK}=\frac{L*I_{PK}}{NS}

I_{PK }的计算可以参考上一篇文章,N为电感匝数,S为磁路有效截面积,L为电感量,这里假设L=22\mu HI_{PK}=10AS=2cm^{2}N=20,代入上式得:B_{PK}=\frac{22*10^{-6}*10}{20*2*10^{-4}}=0.055T

式中把\mu H化为了Hcm^{2}化为了m^{2}


对于大多数铁氧体磁芯而言,饱和磁感应强度大约为0.3T,所以0.055T是完全可以接受的。而且从式中我们可以看出来,电感量越大磁芯反而越容易饱和。

反之我们也可以把0.3T带入上式,反推出磁饱和时的峰值电流,在任何条件下电感电流均不可以大于该值。

还要注意,想要通过增加匝数来降低磁通密度是行不通的,因为电感量还可以表示为:

L=\frac{\mu N^{2}S}{l}

可以看出来匝数增加,电感量也会增加,而且是·随N^{2}增加,故增加匝数磁通密度也会随之增加。

上式怎么来的呢?下面做简单推导。

磁通密度等于磁导率与磁场强度的乘积:

B=\mu H


安培环路定律可以表示为:

Hl=NI

即磁场强度沿闭合回路的积分等于该回路包围的所有电流的代数和。l为磁路长度。


联立两式得:

B=\frac{\mu NI}{l}

把上式代入\Delta B=\frac{L\Delta I}{NS},即可得到L=\frac{\mu N^{2}S}{l}


结语:如有误,欢迎指出;欢迎讨论,互相学习。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋至日丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值