大模型驱动的新范式选车引擎

1. 引言

OpenAI的ChatGPT于2022年11月末发布,以其强大的智能能力惊艳四方,掀起了大模型浪潮,开启大模型纪元的时代。
大模型在语言理解、生成创作、逻辑推理等方面表现出非常高的性能水平;而搜索作为检索整合信息的经典场景,成为大模型落地的重要突破口,搜索行业迎来了变革的机会。
微软作为OpenAI的最大股东,首先将chatGPT集成到New bing(现为Copilot)中,合并搜索与聊天能力,将搜索带到了一个新的创新水平。紧接着Google以及Baidu都紧随其后,结合自家大模型技术分别打造了SGE与AI伙伴的AI搜索引擎,以期建立大模型时代搜索的防御壁垒。专注于生成式搜索的创业公司Perplexity AI,不到两年时间估值达到5.2亿美元。国内的天猫璇玑、淘宝问问、抖音AI搜,B站AI助手等等,都将大模型嵌入搜索,为用户提供特色化的搜索体验。

2. 选车引擎如何革新体验

汽车之家是中国领先的汽车互联网平台,为汽车消费者提供贯穿选车、买车、用车、置换等所有环节的全面、准确、快捷的一站式服务,而汽车之家的搜索则是满足用户选车需求的重要入口。汽车之家传统的选车引擎,用户输入汽车相关的Query关键词, 发起搜索返回多个相关的候选结果;然后点击多个链接并进行浏览、信息提取;如果是更加复杂的选车问题,例如想了解“宝马x3的续航怎么样,内部空间大不大”,还需要反复更换不同的query进行搜索,整合多次的查找信息才能进行有效的选车决策。可以发现,当前的搜索选车模式下,用户需要甄别处理大量繁杂、碎片的信息,同时面对多样化的信息容易出现选择困难;对于复杂些的选车需求,用户的选车行为连贯性与完整性都难以保证。受限于传统的搜索形态与技术范式,如何优雅地解决此问题一直都是相对棘手的事。大模型的出现,让问题有了突破的可能。
在这里插入图片描述

大规模参数量模型的智能涌现,带来了多项任务上的极速性能提升,其ICL(In Context Learning,上下文学习)以及CoT(Chain of Thought,思维链)特性体现出LLM强大的泛化与智能水平。大模型擅长进行文本创作、语言理解、逻辑推理等AIGC任务,但应用于汽车垂直领域,仍然存在一些不足,例如:领域知识不足,通用大模型的训练数据无法涉及行业的私域数据,专业性知识存在盲区;幻觉问题,询问“剁椒鱼头车是什么”,GPT4给出下图中一本正经却并不正确的答案;时效性问题,大模型受限于参数化知识无法动态更新,对于数据时效外的问题只能拒绝回答或者幻觉生成。
在这里插入图片描述

可以发现,想要获得准确严谨的答案,单纯依靠大模型是不现实的,容易出现幻觉、时效性、领域知识、长尾等问题,无法有效满足用户的需求。因此,在大模型还是搜索引擎的选择问题中,我们选择了全都要!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值