小样本时的概率估算


本文严重参考了《Foundations of Statistical Natural Language Processing》和《MaximumEntropy Language with Non-Local Dependencies》(吴军);侵权则删。本文本着传播信息的不失真的理念,主要对其中的知识进行了原封不动的诠释,并无其他改变。(编辑公式太坑了,word拷贝过来公式不能显示,直能从word上截图的,大家凑合一下)



总结:


以上的一些法都是前人的结果,虽然主要是以自然语言处理为应用情景,但是很多情况都会遇到样本集合较小的情况,我们实际使用时可以根据需要自行发挥。但是一个好的修正方法需要满足以下一点:所有情况的概率之和为1。以上的9个方法里面都满足这一条件,大家可自行验证。



©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值