随机变量的概率分布

1. 离散型随机变量的概率分布

1.1 伯努利分布

1.定义
一个非常简单的试验是只有两个可能结果的试验。

2.实例
掷硬币(正面/反面)
掷骰子(单数/双数)

3.概率函数

在这里插入图片描述
4.均值和方差
期望值(均值): E(X) = 1p + 0q = p
方差:var(X) = p*q
q: 成功的概率
q = 1 - p

1.2 二项分布

1.定义
n次重复的伯努利实验。
如果随机变量X服从参数为n和p的二项分布,我们记为X~B(n,p);
n:试验次数
p:每次实验成功的概率

2.实例
将硬币扔n次,出现正面向上的次数

3.概率函数
在这里插入图片描述

4.均值和方差
期望值(均值): E(X) = n*p
方差:var(X) = np(1-p)

5.曲线
在这里插入图片描述
性质:
1: p>q,左偏
2: p<q,右偏
3: p=q, 对称

6.应用实例
抛4次硬币时,正面出现1次的次数的期望值(Expected Value)?
E(X) = 4* 1/2 = 2

1.3 泊松分布

1.定义
在单位时间或者空间内,某个事件发生次数的参数为λ时使用。
测试给定时间间隔内,事件频率

2.实例
一小时内进入商场的顾客数量;
每生产100件产品,出现残次品的数量。

3.概率函数
在这里插入图片描述

4.均值和方差
期望值(均值)= 方差= λ

5.应用实例
例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×10核苷酸对)平均产生3个嘧啶二体,请问一个基因组没有产生二体的概率是?
已知:e^(-1.5) = 0.22
解:
λ = 3, k = 0
P(X=0) = e^(-λ) * (λ^k)/k! = e^(-3) = e^(-1.5*2) = (e(-1.5))2 = 0.22^2 = 0.484

2.连续型随机变量的概率分布

2.1正态分布

1.定义
又成为“常态分布”,“高斯分布”。两头低,中间高,以均值为中线左右对称的钟形。
若随机变量X服从数学期望μ、方差为σ2的正态分布,记为N(μ,σ2)。

** 标准正态分布 **
当μ = 0,σ = 1时的正态分布是标准正态分布,也叫做Z分布

2.普通正态分布转换为标准正态分布
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。

转换公式:
在这里插入图片描述
** 实例1 **
假设公共汽车们的高度按成年男性碰头的机会小于1%来设计。又假设成年男性的身高服从正态分布X∼N(170,6^2),求问车门的高度h是多少?
已知:P(z≤2.33)=0.99 (查询标准正态分布表)

解:
1)假设身高为随机变量X,那么问题就可以变为:P(x>h) = 0.01
2)则 1- P(x≤h)=0.01 --》P(x≤h) =0.09
3)因为 X∼N(170,6^2),平均值μ = 170,标准方差σ = 6,
所以利用转换公式,(h-170)/6~N(0,1)
已知 P(z≤2.33)=0.99, 所以(h-170)/6=2.33 --》h = 6*2.33 + 172 = 183.98cm

** 实例2 **
现在有一个μ = 10和σ = 2的正态随机变量,求x在10与14之间的概率是多少?

解:
当x=10时,z = (x -μ)/ σ = (10-10)/2 = 0
当x=14时,z = (14-10)/2 = 2
于是,x在10与14之间的概率等价于标准正态分布中0与2之间的概率。
P(0≤x≤2) = P(x≤2) - P(x≤0) = 0.9772 - 0.5 = 0.4772

3.概率密度函数

普通正态分布:
在这里插入图片描述

标准正态分布
在这里插入图片描述
实例3
在考试结果平均分为 80 ,标准偏差为4的正态分布的情况下,假定我的考试分数为90 分,下列解释正确的选项为?
① 我的分数与全部考试者的平均分数相同
② 我的分数进入了全部考试者中的前 3%
③ 我的分数没到达前 10%
④ 我的分数是后 30% 的分数
题解:
(90-80)/4=2.5 该值距离均值大于2个𝜎,小于3个𝜎,则该分数出现的概率为:(1-95%)/2=2.5%  进入了全部考试者中的前 3%

4.特性
1)平均= 中值= 众数
2)确认正态分布的方法:
直方图;Q-Q (待验证)

5."68-95-99.7"定律
对任何正态分布的事件
1)68%的结果分布在距离平均值1个标准差之内的范围:𝑃(𝜇−𝜎<𝑋<𝜇+𝜎)=0.683
2)95%的结果分布在距离平均值2个标准差之内的范围:𝑃(𝜇−2𝜎<𝑋<𝜇+2𝜎)=0.954
2)99%的结果分布在距离平均值3个标准差之内的范围:𝑃(𝜇−3𝜎<𝑋<𝜇+3𝜎)=0.997

在这里插入图片描述

2.2 t分布

1.定义
t-分布用于根据小样本来估计呈正态分布且方差未知的总体的均值。
如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

假设X服从标准正态分布N(0,1),Y服从𝑋²(𝑘)分布,那么
在这里插入图片描述
的分布 称为自由度为n的t分布,记为Z~t(n)。

自由度
在已知的条件下可以自由变化的变量数
例如:10个礼物中,9个被选中的话,最后一个自动被选定,t分布的自由度为n-1

2.特性
1)自由度越小,t分布曲线愈平坦,曲线中间越低,曲线双侧尾部翘得愈高;
2)自由度越大,越接近标准正态分布;
3)自由度df=∞时,t分布曲线为标准正态分布曲线。
4)均值为0,图形左右对称
5)t统计量
在这里插入图片描述
3.用途
1)根据小样本来估计呈正态分布且方差未知的总体的均值
2)线性模型回归系数推断(假设从属变量正态分布)时使用

4.均值和方差
3.均值和方差
均值=μ
方差=总体方差*n/(k-2)

2.3 卡方分布

1.定义
若n个相互独立的随机变量ξ₁,ξ₂,…,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布。

𝑋²(𝑘),k:自由度

2.性质
1)自由度越大,越接近正态分布
2)卡方分布密度曲线下的面积都是1

3.用途
1)总体方差推断时(假设数据正态分布)使用;
2)卡方检验(独立性检验,同质性检验)

2.3 F分布

1.定义
是两个服从卡方分布的独立随机变量各除以其自由度后的比值的抽样分布,是一种非对称分布,且位置不可互换。

若总体X~N(0,1) ,(X1,X2,…,Xn1) 与 (Y1,Y2,…,Yn2) 为来自X的两个独立样本,设统计量
在这里插入图片描述
则称统计量F服从自由n1 和 n2的F分布,记为F~F(n1,n2)

2.用途
方差分析、回归方程

2.4 指数分布(Exp(λ))

1.定义
是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。

2.用途
电子产品寿命,第一位顾客进入商场所用的时间。

3.均值和方差
平直=1/λ
方差=1/λ^2

2.5 均匀分布

1.定义
均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常几位U(a,b)。

2.概率密度函数
a.离散概率变量
pmf: f(k) = 1/k, x=x1,x2,…,xk

b.连续概率变量
pdf:f(x) = 1/(b-a), a<x<b

在这里插入图片描述

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值