问题
仓库人员需要按照订单上的信息将商品从货架上拣选出来,这些订单大致形态如下:
订单1:{商品1、商品2、商品3}
订单2:{商品2、商品3、商品5、商品6、商品7}
订单3:{商品1、商品4}
……
订单10000:{商品239、商品445、商品500}
假定总共1万订单,商品种类500种。在这些订单中的商品不大于10种,至少有1种,以1-5种商品组合的订单数量为最多,很多订单的商品组合可能很相似,但假定相互完全相同的订单不会大批出现(不大于10单)。
现在我们需要将这1万个订单交由仓库人员拣选,显然系统应当对这些订单进行合并优化,让每个员工只需要取较少种类的商品就可以完成拣选出较多的订单,即让相似的订单尽可能组合成一个订单组。由于员工的个人限制,一个员工一次拣选包含的订单数不宜大于50。请考虑设计一种算法或策略,使拣选过程中每个选包的商品种类总数尽可能最小。
设定
- 为了使问题一般化,接下来不在考虑订单中商品不大于10种,订单相似程度等信息。
一个解法
这是一个划分集合的问题,尽可能保证每个商品尽可能出现的订单集合(选包)数较少,这其实也是要求每个订单集合的订单尽可能相似。而每个选包又通过商品建立错综复杂的联系,怎么切分这个订单的集合呢~
问题演化
在说到“联系”时,我突然想到想到这个以当做一个网络切分的问题来处理。订单可以定义为A类节点,而商品当做B类节点。而订单包含商品则构成一条边。我们可以通过将商品一分为二的方式来切分这个大的网