【MIT】Introduction to DL

MIT课程首页
http://introtodeeplearning.com/2020/index.html

6. Limitations and New Frontiers

6.1 AI被过渡宣传

有人说:“A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.”,但是这其中有隐含的限制:

  • 需要无穷大的结点数
  • 模型未必泛化

6.2 泛化性

NN的泛化能力需要重新审视,Google做过实验,如果将训练集中部分样本的标签写错,训练集的准确率依然能接近100%,只是测试集的准确率随比例逐渐降低。

DL并不是万能的,如果训练集并不能表征样本的实际分布,DL不可能自学。

6.3 对抗攻击

adversarial attack
随便加一点噪声,NN完全不能work,全分错了。

其他缺陷:
难以编码结构
难以表示不确定性
过分依赖优化
专家级设计

6.4 新方向

CNN擅长利用空间结构;
社交类数据,可以用Graph Conv Nets;
不确定性,用bayesian贝叶斯 Deep Learning;
设计,用AutoML。

7.Neurosymbolic Hybrid AI

神经符号混合人工智能
IBM
https://zhuanlan.zhihu.com/p/101324429

8. Generalizable Autonomy in Robotics

NVIDIA

9. Neural Rendering

神经渲染
Lambda

10. ML for Scent

Google Brain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值