【MIT】Introduction to DL
MIT课程首页
http://introtodeeplearning.com/2020/index.html
6. Limitations and New Frontiers
6.1 AI被过渡宣传
有人说:“A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.”,但是这其中有隐含的限制:
- 需要无穷大的结点数
- 模型未必泛化
6.2 泛化性
NN的泛化能力需要重新审视,Google做过实验,如果将训练集中部分样本的标签写错,训练集的准确率依然能接近100%,只是测试集的准确率随比例逐渐降低。
DL并不是万能的,如果训练集并不能表征样本的实际分布,DL不可能自学。
6.3 对抗攻击
adversarial attack
随便加一点噪声,NN完全不能work,全分错了。
其他缺陷:
难以编码结构
难以表示不确定性
过分依赖优化
专家级设计
6.4 新方向
CNN擅长利用空间结构;
社交类数据,可以用Graph Conv Nets;
不确定性,用bayesian贝叶斯 Deep Learning;
设计,用AutoML。
7.Neurosymbolic Hybrid AI
神经符号混合人工智能
IBM
https://zhuanlan.zhihu.com/p/101324429
8. Generalizable Autonomy in Robotics
NVIDIA
9. Neural Rendering
神经渲染
Lambda
10. ML for Scent
Google Brain