还是调参简单呀,自己编的问题总是一大堆,做这个练习顺便复习了前面一些数据处理知识
1.数据量大的时候缩小数据
2.将时间戳转换为年月日
3.把日期格式转为为字典格式
4.构造新的特征
5.取出目标值和特征值
6.数据分割
7.算法流程
8.还忘了个标准化,虽然这次用不上,但还是回忆下
下面就是调参之旅了
# 导入算法包以及数据集
import numpy as np
import pandas as pd
from sklearn import neighbors
from sklearn.model_selection import train_test_split
#读取数据
data=pd.read_csv('iris.csv')
print(data.head())
Sepal_Length=data['Sepal_Length']
print(Sepal_Length.shape)
#处理数据
#1.缩小数据
# data=data.query('Sepal_Length>4 & Sepal_Length<5')
# print(data.shape)
#2.将时间戳转换为年月日
# time_value=pd.to_datetime(data[time])
#把日期格式转为为字典格式
# time_value=pd.DatatimeIndex(time_value)
#3.构造新的特征
#
# i=[i for i in range(150)]
# 将列表转换为矩阵表示
# i=np.array(i)
# data['day']=i
# print(data.shape)
# #(150, 7)
# 4.删除特征
# print(data.head())
# data=data.drop(['day'],axis=1)
# print(data.head())
#5.取出目标值和特征值
data=data.values
x=data[1:,1:-1]
y=data[1:,-1:]
#因为这里花的种类是字符串,所有将类型数据化
Species=[]
for i in y:
if i =='setosa':
Specie = 1
elif i=='versicolor':
Specie = 2
else:
Specie = 3
Species.append(Specie)
#将列表y转换为矩阵
y=np.array(Species)
print(y.shape)
#6.数据分割
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
#7。算法流程
knn=neighbors.KNeighborsClassifier(n_neighbors=7)
knn.fit(x_train,y_train)
y_predict=knn.predict(x_test)
print('预测的种类:',y_predict)
print('真实的种类:',y_test)
print('准确率:',knn.score(x_test,y_test))
预测的种类: [2 2 2 2 2 2 3 2 1 2 1 2 2 2 2 3 3 1 2 1 1 2 1 1 1 3 3 2 3 2 3 1 2 1 2 1 2
3 2 2 3 1 3 2 3]
真实的种类: [2 2 2 2 2 2 3 2 1 2 1 2 2 2 2 3 3 1 2 1 1 2 1 1 1 3 3 3 3 2 3 1 2 1 2 1 2
3 2 2 3 1 3 2 3]
准确率: 0.9777777777777777
#8.标准化
# from sklearn.preprocessing import StandardScaler
# std=StandardScaler()
# x_train=std.fit_transform(x_train)
# x_test=std.transform(x_test)