Density 计算公式

Density 又称Utilization, 计算公式如下
在这里插入图片描述

leaf cell 面积跟可用总面积的计算,受多种因素影响:

  • 通常leaf cell 包括std cell 跟hard macro;
  • 在计算Density 的时候,如果hard macro 的placement status 是FIXED 或COVER, 则Hard macro 的面积不算在『leaf cell 面积』 跟『可用总面积』内,Hard macro 的面积包含Block halos;
  • 如果hard macro 的placement status 是PLACED, 则Hard macro 的面积会算在『leaf cell 面积』 跟『可用总面积』内
  • leaf cell 的面积可从lib 直接读出,也可从lef 中读出『SIZE X BY Y』计算得到;通常std cell 和hard macro 是矩形,从lib 中读出的面积跟从lef 中读出『SIZE X BY Y』计算得到的面积是相等的;但是有些hard macro 是多边形,此时从lib 中读出的面积跟从lef 中读出『SIZE X BY Y』计算得到的面积是不同的,对于多边形hard macro, 在LEF 中会有『 LAYER OVERLAP 』的定义; 不同工具的不同命令在用lef 报hard macro 的面积时对多边形的处理会不同,有的命令直接用『SIZE X BY Y』有的命令会将OVERLAP 部分减去。
    在这里插入图片描述
  • 在Innvous 中如果设了cell padding, 则cell padding 要算在leaf cell 面积中;
  • 可用总面积指可以用于放置std cell 的面积,可以理解为ROW 的面积减去Blockage 的面积;
  • 在Innovus 中,如果Stripes on layers specified as obstructions, 会被当做placement blockage 所以这部分面积会被从可用总面积中减去;
  • 对于physical only 的cell, 不同工具不同命令在计算面积时有所差别。
    在这里插入图片描述

innovus 中Density 的report

在Innovus 中可用如下命令来report density, 不同命令的应用场景和计算方式有所不同。

  • optDesign
  • timeDesign

optDesign, timeDesign

timeDesign, optDesign, 都会在timing summary table 之后给出一个density 值,这几个命令,都不把fixed/cover cell 计算在内

placeDesign

placeDesign, place_opt_design 同样会在timing summary table 之后给出一个density 值,也不把fixed/Cover cell 计算在内;但总可用面积的计算方式稍有不同,如在Innovus 中设置了setPlaceMode -maxDensity Dvalue, 则『实际总可用面积= 总可用面积 * Dvalue 』;同时,placeDesign 会将一些small channel 从总可用面积中减去;此处无具体公式,总而言之placeDesign 在计算density 时用的是一个复杂的内部算法。

checkPlace

checkPlace 会分别报出包含fixed cell 跟不包括fixed cell 的Density

checkFPlan -reportUtil and report_qor

checkFPlan -reportUtil 会报出core utilization 跟effective utilization:
core utilization: 不考虑blockage, cell padding 等因素的影响;

effective utilization: 考虑blockage, cell padding 等因素的影响。

需要强调的一点:checkFPlan -reportUtil 会将soft blockage 跟partial placement blockage 从总可用面积中减掉。

place_opt_design 在global placement 开始时报的Density 可能会比timing summary 或checkFPlan -reportUtil 报得值大,这是由于place_opt_design 为了解congestion 使用了auto density screens 导致的,auto density screens 对用户不可见,但是可以从innovus log 中看到auto density screens 对density 的影响:

report_qor 是Innovus common UI 的命令,其行为跟checkFPlan -reportUtil 一致。

queryDensityInBox

queryDensityBox 会分别报出std cell, hard macro, power metal, placement Obs 的density.

其中:
StdInstArea = area of standard cells + area of physical cells;

physical cell 包括:filler, Endcap, welltaps, power shutoff (PSO), Decaps cells 等;

freeSpace = core area - blocked core area;

blocked_core_area is the area blocked by the hard macros, power stripes (determined by setPlaceMode -prerouteAsObs setting), and placement blockages.

FIXED cells and cell padding do not effect the calculation.

macroInstArea = area_of_hard_macros

totArea = total_core_area

powerMetalArea = area_of_power_stripes

setPlaceMode -prerouteAsObs is used to determine if the power stripes block the cells from being placed under them.

PlacementObsArea = area_of_placement_blockages

reportDensityMap

reportDensityMap 会生成一个用颜色标示的Density 分布图跟一个density report. 默认,reportDensityMap 不把fixed cell 计算在内,可以通过设置如下命令,将fixed std cell 计算在内,但是不会把fixed macro 计算在内。reportDensityMap 主要用于report hotspots. 需要用queryPlaceDensity 跟GUI 来确定Density 的分布跟问题。
在这里插入图片描述

summaryReport

summaryReport 会报出更详细的信息,其report 内容为:
在这里插入图片描述

转载:https://my.oschina.net/u/4581603/blog/4426851

### DBSCAN算法的计算公式 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法,用于发现数据集中的簇并识别噪声点。该算法的核心在于如何定义检测高密度区域。 #### 密度可达性核心对象 为了理解DBSCAN的工作原理,首先要了解几个重要概念: - **ε-邻域 (Epsilon Neighborhood)**: 对于给定的数据点 \( p \),其 ε-邻域是指距离不超过指定半径 \( \varepsilon \) 的所有其他点组成的集合。 - **最小样本数 MinPts**: 定义了一个点成为核心点所需的最少邻居数量(包括自己)。如果一个点在其 ε-邻域内至少有 MinPts 个点,则此点为核心点。 - **直接密度可达 Directly Density Reachable**: 如果 q 属于 p 的 ε-邻域,并且 p 是核心点,则说 q 可以由 p 直接密度到达。 - **密度可达 Density Reachable**: 存在一个序列 \( p_1, ..., p_n \),其中 \( p_i \) 到 \( p_{i+1} \) 都是直接密度可达的关系链路。 - **密度相连 Density Connected**: 若存在某一点 o,使得两个不同点都可从 o 出发通过一系列密度可达关系连接起来,则这两个点被认为是相互之间密度相连。 #### 距离计算 在实际应用中,通常采用欧氏距离作为衡量两点间距离的标准。对于二维平面上的任意两点 \( P=(p_x,p_y), Q=(q_x,q_y)\),它们之间的欧几里得距离可以通过下面的公式得到[^3]: \[ d(P,Q)=\sqrt{(p_x-q_x)^2+(p_y-q_y)^2}\] 当扩展到多维空间时,假设我们有两个 n 维向量 \( X=[x_1,x_2,\ldots ,x_n]\) \( Y=[y_1,y_2,\ldots ,y_n]\),则两者间的欧几里德距离表示如下: ```python import numpy as np def euclidean_distance(x, y): return np.sqrt(np.sum((np.array(x) - np.array(y))**2)) ``` #### 算法流程概述 根据上述定义,在执行DBSCAN过程中会经历以下几个阶段: 1. 初始化未访问过的点列表; 2. 遍历每一个尚未被处理的数据点;如果是核心点,则启动一个新的簇; 3. 扩展当前簇直到无法找到更多满足条件的新成员为止; 4. 将剩余孤立点标记为噪音。 具体实现细节涉及到参数的选择以及性能优化等方面的内容,比如使用KD树或球形树等加速近似最近邻查询的技术来减少时间复杂度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值