模型压缩部署概述

模型压缩部署概述

  • 一,模型在线部署

    • 1.1,深度学习项目开发流程

    • 1.2,模型训练和推理的不同

  • 二,手机端CPU推理框架的优化

  • 三,不同硬件平台量化方式总结

  • 参考资料

一,模型在线部署

深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署(模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。

现阶段的平台主要分为云平台(如英伟达 GPU)、手机移动端平台(ARM 系列芯片)和其他嵌入式端侧平台(海思 3519、安霸 CV22、地平线 X3、英伟达 jetson tx2 等芯片)。对于模型部署/移植/优化工程师来说,虽然模型优化、量化等是更有挑战性和技术性的知识,但是对于新手的我们往往是在做解决模型无法在端侧部署的问题,包括但不限于:实现新 OP、修改不兼容的属性、修改不兼容的权重形状、学习不同芯片平台的推理部署框架等。对于模型转换来说,现在行业主流是使用 Caffe 和 ONNX 模型作为中间模型。

1.1,深度学习项目开发流程

在高校做深度学习 demo 应用一般是这样一个过程,比如使用 Pytorch/TensorFlow 框架训练出一个模型,然后直接使用 Pytorch 框架做推理(test)完成功能验证,但是在工业界这是不可能的,因为这样模型推理速度很慢,一般我们必须有专门的深度学习推理加速框架去做模型推理(inference)。以 GPU 云平台推理框架 TensorRT 为例,简单描述模型训练推理过程就是:训练好网络模型(权重参数数据类型为 FP32)输入 TensorRT,然后 TensorRT 做解析优化,并进行在线推理和输出结果。两种不同的模型训练推理过程对比如下图所示:

图片

前面的描述较为简单,实际在工业届,理想的深度学习项目开发流程应该分为三个步骤: 模型离线训练、模型压缩和模型在线部署,后面两个步骤互有交叉,具体详情如下:

  1. 模型离线训练:实时性低,数据离线且更新不频繁,batchsize 较大,消耗大量 GPU 资源。

    • 设计开发模型网络结构;

    • 准备数据集并进行数据预处理、EDA 等操作;

    • 深度学习框架训练模型:数据增强、超参数调整、优化器选择、训练策略调整(多尺度训练)、TTA、模型融合等;

    • 模型测试。

  2. 模型优化压缩:主要涉及模型优化、模型转换、模型量化和模型编译优化,这些过程很多都在高性能计算推理框架中集成了,各个芯片厂商也提供了相应的工具链和推理库来完成模型优化压缩。实际开发中,在不同的平台选择不同的推理加速引擎框架,比如 GPU 平台选择 TensorRT,手机移动端(ARM)选择 NCNN/MNNNPU 芯片平台,如海思3519、地平线X3、安霸CV22等则直接在厂商给出的工具链进行模型的优化(optimizer)和压缩。

    • 模型优化 Optimizer:主要指计算图优化。首先对计算图进行分析并应用一系列与硬件无关的优化策略,从而在逻辑上降低运行时的开销,常见的类似优化策略其包括:算子融合(conv、bn、relu 融合)、算子替换、常数折叠、公共子表达式消除等。

    • 模型转换 ConverterPytorch->CaffePytorch->ONNXONNX模型->NCNN/NPU芯片厂商模型格式(需要踩坑非常多,PytorchONNXNPU 三者之间的算子要注意兼容)。注意 ONNX 一般用作训练框架和推理框架之间转换的中间模型格式。

    • 模型量化 Quantizer:主要指训练后量化(Post-training quantization PTQ);权重、激活使用不同的量化位宽,如速度最快的量化方式 w8a8、速度和精度平衡的量化方式 w8a16

    • 模型编译优化(编译优化+NPU 指令生成+内存优化)Compiler模型编译针对不同的硬件平台有不同优化方法,与前面的和硬件无关的模型层面的优化不同。GPU平台存在 kernel fusion 方法;而 NPU 平台算子是通过特定二进制指令实现,其编译优化方法包括,卷积层的拆分、卷积核权重数据重排、NPU 算子调优等。

  3. 模型部署/SDK输出: 针对视频级应用需要输出功能接口的SDK。实时性要求高,数据线上且更新频繁,batchsize 为 1。主要需要完成多模型的集成、模型输入的预处理、非DL算法模块的开发、 各个模块 pipeline 的串联,以及最后 c 接口(SDK)的输出。

    • 板端框架模型推理InferenceC/C++。不同的 NPU 芯片/不同的公司有着不同的推理框架,但是模型的推理流程大致是一样的。包括:输入图像数据预处理、加载模型文件并解析、填充输入图像和模型权重数据到相应地址、模型推理、释放模型资源。这里主要需要学习不同的模型部署和推理框架。

    • pipeline 应用开发: 在实际的深度学习项目开发过程中,模型推理只是其中的基础功能,具体的我们还需要实现多模型的集成、模型输入前处理、以及非 DL 算法模块的开发: 包括检测模块、跟踪模块、选帧模块、关联模块和业务算法模块等,并将各模块串联成一个 pipeline,从而完成视频结构化应用的开发。

    • SDK集成: 在完成了具体业务 pipeline 的算法开发后,一般就需要输出 c 接口的 SDK 给到下层的业务侧(前后端)人员调用了。这里主要涉及 c/c++ 接口的转换、pipeline 多线程/多通道等sample的开发、以及大量的单元、性能、精度、稳定性测试。

    • 芯片平台板端推理 Inference,不同的 NPU 芯片有着不同的 SDK 库代码,但是模型运行流程类似。

不同平台的模型的编译优化是不同的,比如 NPU 和一般 GPU 的区别在于后端模型编译上,GPU 是编译生成 kernel library(cuDNN 函数),NPU 是编译生成二进制指令;前端的计算图优化没有本质区别,基本通用。

所以综上所述,深度学习项目开发流程可以大致总结为三个步骤: 模型离线训练模型优化压缩模型部署/SDK输出,后两个步骤互有交叉。前面 2 个步骤在 PC 上完成,最后一个步骤开发的代码是需要在在 AI 芯片系统上运行的。最后以视差模型在海思 3519 平台的部署为例,其模型部署工作流程如下:

图片

1.2,模型训练和推理的不同

为了更好进行模型优化和部署的工作,需要总结一下模型推理(Inference)和训练(Training)的不同:

  1. 网络权重值固定,只有前向传播(Forward),无需反向传播,因此:

    • 模型权值和结构固定,可以做计算图优化,比如算子融合等;

    • 输入输出大小固定,可以做 memory 优化,比如 feature 重排和 kernel 重排。

  2. batch_size 会很小(比如 1),存在 latency 的问题。

  3. 可以使用低精度的技术,训练阶段要进行反向传播,每次梯度的更新是很微小的,需要相对较高的精度比如 FP32 来处理数据。但是推理阶段,对精度要求没那么高,现在很多论文都表明使用低精度如 in16 或者 int8 数据类型来做推理,也不会带来很大的精度损失。

二,手机端CPU推理框架的优化

对于 HPC 和软件工程师来说,在手机 CPU 端做模型推理框架的优化,可以从上到下考虑:

  1. 算法层优化:最上面就是算法层,如可以用winograd从数学上减少乘法的数量(仅在大channel尺寸下有效);

  2. 框架优化:推理框架可以实现内存池、多线程等策略;

  3. 硬件层优化:主要包括: 适应不同的硬件架构特性、pipelinecache优化、内存数据重排、NEON 汇编优化等。

三,不同硬件平台量化方式总结

芯片厂商芯片型号支持方式支持精度量化方式/范围量化工具
华为Hisi系列3519A/3559A/3516C等整网编译int16/int8非线性(对数) 量化nnie_mapper
AmbarellaCV22/CV25整网编译int8/int16支持权重激活选择不同的位宽量化、自动搜索最优的量化策略工具链CNNGen 的 Parsers
Nvidia全系列GPGPU整网编译/CUDA Cfp32/fp16/int8/int4/int1TensorRT: 非对称 KL 散度 + per-channel/per-layer 量化TensorRT 框架
Qualcomm全系列 SoC整网编译fp32/fp16/int8非对称最大最小值量化 + per-layer 量化AIMET 模型量化压缩工具
RockchipsRV1108/RV1109/RV1126等整网编译int16/int8非对称量化/混合量化RKNN Toolkit2

NVIDIA 的 TensorRT 框架在对权值(weights) 的量化上支持 per-tensor(也叫 per-layer) 和 per-channel 两种方式,采用对称最大值的方法;对于激活值(activations) 只支持 per-tensor 的方式,采用 KL-divergence 的方法进行量化。

参考资料

  1. 《NVIDIA TensorRT 以及实战记录》PPT

### 模型压缩技术及其在边缘设备上的部署 #### 一、模型压缩的核心算法原理 模型压缩是一种通过减少模型参数数量和计算复杂度的技术,旨在使深度学习模型能够在资源受限的环境中高效运行。常见的模型压缩方法包括剪枝(Pruning)、量化(Quantization)、低秩分解(Low-Rank Factorization)和知识蒸馏(Knowledge Distillation)。这些方法能够有效降低模型的存储需求和计算开销。 剪枝是指移除神经网络中的冗余权重或连接[^1]。这种方法可以通过结构化或非结构化的剪枝方式实现,在不显著影响模型性能的情况下大幅减少参数数量。 量化则是将浮点数表示转换为定点数或其他更紧凑的形式,从而节省内存并加速推理过程[^2]。例如,8位整数量化相比32位浮点数能显著提升硬件利用率。 知识蒸馏则利用一个小规模的学生模型去模仿大规模教师模型的行为[^5]。这种方式特别适合于迁移大模型的能力至轻量级模型中,尤其在边缘计算场景下表现出色。 --- #### 二、模型压缩的具体操作步骤 以下是基于强化学习的模型压缩流程概述: 1. **定义奖励函数**:设定目标指标作为优化方向,比如延迟时间、FLOPs 或者准确率损失阈值。 2. **构建代理环境**:创建模拟器或者真实测试平台评估候选解的表现。 3. **训练策略网络**:采用深度Q-learning或者其他形式的RL框架指导探索空间内的最优配置方案。 4. **验证最终效果**:选取表现最好的个体重新加载回原始任务执行实际推断作业。 下面是一个简单的Python代码片段演示如何使用PyTorch实现基础的知识蒸馏机制: ```python import torch.nn as nn import torch.optim as optim class StudentModel(nn.Module): def __init__(self, input_size, output_size): super(StudentModel, self).__init__() self.fc = nn.Linear(input_size, output_size) def forward(self, x): return self.fc(x) def knowledge_distillation_loss(student_output, teacher_output, temperature=4): soft_student = nn.functional.softmax(student_output / temperature, dim=-1) soft_teacher = nn.functional.softmax(teacher_output / temperature, dim=-1) loss_fn = nn.KLDivLoss(reduction='batchmean') return loss_fn(torch.log(soft_student), soft_teacher) * (temperature ** 2) student_model = StudentModel(...) optimizer = optim.Adam(student_model.parameters(), lr=0.001) for data in dataloader: inputs, labels = data student_outputs = student_model(inputs) with torch.no_grad(): teacher_outputs = teacher_model(inputs).detach() distill_loss = knowledge_distillation_loss(student_outputs, teacher_outputs) optimizer.zero_grad() distill_loss.backward() optimizer.step() ``` 上述代码展示了学生模型如何从教师模型获取软标签信息完成训练的过程[^3]。 --- #### 三、边缘端部署的最佳实践 为了确保AI模型成功部署到边缘设备上,需遵循以下几点建议: - 使用高效的框架支持:TensorFlow Lite 和 PyTorch Mobile 是专门为移动端设计的解决方案,它们提供了内置的功能简化导出适配工作流[^4]。 - 针对特定硬件调优:不同厂商生产的SoC可能具备独特的指令集扩展特性(如ARM NEON),合理运用可以极大改善吞吐能力。 - 定期监控更新迭代周期:随着业务逻辑变化和技术进步,定期审查现有流水线是否存在改进机会至关重要。 此外,考虑到安全隐私保护的重要性,在传输敏感数据前务必加密通信链路;同时也要注意本地缓存管理以防泄露潜在风险。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半九拾

援助一个bug吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值