目录
量化的开源工具很多,本文使用ncnn进行量化,关于ncnn模型部署的参考链接1。
由于移动端的算力和内存通常较小,因此我们在部署的时候往往需要进一步压缩模型,以降低内存占用和计算量。
1. 优化模型
在生成model.param和model.bin模型后,可以在ncnn路径下(我的路径G:\NCNN\build-vs2017\tools)找到ncnnoptimize/ncnnoptimize.exe,然后很简单,打开shell(终端,使用命令直接生成优化后的模型,模型大小将压缩一半)
// 0表示float32, 1表示float16
// 优化过程会合并卷积层和激活层
./ncnnoptimize.exe model.param model.bin bettermodel.param bettermodel.bin 1
2. 量化模型
2.1 生成imagelist.txt
在ncnn路径(我的路径G:\NCNN\build-vs2017\tools\quantize)下找到ncnn2table/ncnn2table.exe
<// 在ncnn2table路径下准备图片文件(train的数据即可)放在新建文件夹images里面
// 右键打开git bash,输入:find images/ -type f > imagelist.txt
// 生成存放图片路径的imagelist.txt

本文介绍了如何使用ncnn工具对模型进行优化和量化,包括生成imagelist.txt、table文件,以及量化模型的过程。量化后模型大小显著减少,且在精度上保持了较高的一致性。
最低0.47元/天 解锁文章
1617

被折叠的 条评论
为什么被折叠?



