Albert Gu: More Learning, Less Data(更多学习,更少数据)

Albert Gu是卡内基梅隆大学机器学习助理教授及 Cartesia AI 的首席科学家,入选《时代》2024 年度最具影响力 AI 人物榜单。

构建基础模型需要大量数据。在未来一年,我希望我们能够让模型使用更少的数据进行学习。

人工智能领域通过扩大 Transformer 和数据集规模取得了显著成功,但这种方法可能已接近收益递减的临界点。当前的方法也带来实际问题:训练大型模型需要耗费大量时间和能源,而可用于训练的大规模新数据源也在逐渐枯竭。

现有模型的学习效率远低于人类。训练一个模型需要数万亿个数据标记,而人类学习则只需要数量级少得多的数据量。这表明,人类学习中存在某种学习算法、目标函数、架构或它们的结合,比当前模型更高效。

解决这一问题的关键之一是让模型能够生成更高层次的抽象,并过滤掉噪声。我认为数据效率这一核心问题与以下其他 AI 问题密切相关:

  • 数据整理:当前模型的低效学习需要我们提前准备数据,而这可能阻碍了 AI 自动从数据中学习的潜力。
  • 特征工程:尽管深度学习趋向于更加通用的方法,但工程化特征的工作仍然迁移到其他部分,比如分词过程。这表明模型架构仍有很大改进空间,以提高数据效率并处理更多原始数据。
  • 多模态性:通过整合多种数据类型的核心抽象,模型可以联合利用多种模态,从而减少所需数据量。
  • 可解释性与稳健性:能够生成高层次抽象的模型更容易解释、对噪声更稳健,同时需要更少的数据进行学习。
  • 推理能力:模型提取高层次模式和抽象的能力应当提升其推理效率,相应地减少训练数据需求。
  • 民主化:当前的顶尖模型成本高昂,仅少数机构能够承担。这限制了 AI 在数据或资源匮乏领域的应用。数据高效的模型将使 AI 更易获得、更实用。

以上问题彼此相关,数据效率可能是因,也可能是果。例如,解决可解释性问题可能会促使我们设计出更能提取有效特征、更高效的数据模型;反之,提高数据效率也可能带来更可解释的模型。

无论如何,数据效率至关重要,并且是人工智能领域更广泛进步的指示器。我期待未来一年在这一领域取得重大进展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值