向量内积的几何意义证明过程

两个向量 x , y ∈ R n x,y \in{\Bbb R}^n x,yRn的内积​定义如下:
⟨ x , y ⟩ : = x ⋅ y = ∑ i = 1 n x i y i \langle x,y \rangle := x \cdot y = \sum_{i=1}^n x_i y_i x,y:=xy=i=1nxiyi
即对两个向量执行对应位一一相乘再求和。

如图,经过证明可以得到,即两个向量的内积(内乘)可以计算两个向量的夹角。

A ⃗ ⋅ B ⃗ = ∣ ∣ A ⃗ ∣ ∣ ∣ ∣ B ⃗ ∣ ∣ c o s θ \vec A \cdot \vec B = ||\vec A||||\vec B||cos\theta A B =A B cosθ

证明过程如下:

参考资料:

相关推荐

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

背包的小赵

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值