两个向量
x
,
y
∈
R
n
x,y \in{\Bbb R}^n
x,y∈Rn的内积定义如下:
⟨
x
,
y
⟩
:
=
x
⋅
y
=
∑
i
=
1
n
x
i
y
i
\langle x,y \rangle := x \cdot y = \sum_{i=1}^n x_i y_i
⟨x,y⟩:=x⋅y=i=1∑nxiyi
即对两个向量执行对应位一一相乘再求和。
如图,经过证明可以得到,即两个向量的内积(内乘)可以计算两个向量的夹角。
A ⃗ ⋅ B ⃗ = ∣ ∣ A ⃗ ∣ ∣ ∣ ∣ B ⃗ ∣ ∣ c o s θ \vec A \cdot \vec B = ||\vec A||||\vec B||cos\theta A⋅B=∣∣A∣∣∣∣B∣∣cosθ
证明过程如下:
参考资料: