【LLM大模型】落地RAG系列:RAG入门及RAG面临的挑战和解决方案!!

2023 年以来,RAG 已成为基于大模型的人工智能系统中应用最为广泛的架构之一。因此对 RAG 应用的性能、检索效率、准确性的研究成为核心问题。

本文首先介绍什么是 RAG、为什需要 RAG、介绍 Naive RAG 工作流程及Naive RAG 存在的问题和挑战!

为什么需要 RAG?

大家思考一个问题:既然已经有了大模型,为什么还需要RAG呢?

在大模型的快速发展过程中,大家发现仅仅依靠LLMs会有很多地方制约着我们前进,以下四点比较突出:

  • 幻觉问题:LLMs底层基于概率推理,所以LLMs有时候会一本正经的胡说八道,编造看似合理的事实。
  • 知识缺乏问题:LLMs都是预训练,就拿ChatGPT3.5来说训练数据是2021年,但是对于2021年之后的事情,它将一无所知。另外还可能会产生过时的知识和缺乏一些特定领域的知识。
  • 数据安全问题:对于企业来说,企业的经营数据,商业机密数据都是非常重要的,直接使用大模型可能会有数据安全泄露风险。
  • 可信度问题:不透明、无法追踪的推理过程,导致回答问题可信度问题。

因此检索增强生成(RAG)技术应运而生,通过整合外部知识,提高LLMs生成的答案的准确性和可信度。特别是对于知识密集型任务,并允许持续的知识更新和特定领域信息的整合的场景。

大家可能会问,为什么使用 RAG 而不是大模型微调的方式,RAG的主要使用场景有哪些?

  • 数据变动频繁的场景,频繁变动导致微调成本过高。
  • 回答问题需要给出出处的场景,比如该回答参考的哪篇文章等
  • 对产生幻觉敏感的场景,微调之后也无法避免产生幻觉
  • 节省GPU训练成本的场景

什么是 RAG?

检索增强生成(Retrieval Augmented Generation,RAG)是通过整合来自外部知识源的额外信息来改进大语言模型(Large Language Models,LLMs)应用能力的一种技术。这种技术能够帮助 LLMs 产生更精确和更能感知上下文的回复,同时也能减轻幻觉现象。

简短的公式帮你理解RAG:RAG = 检索 + LLMs

RAG分为两个阶段:第一个阶段:索引,第二个阶段:检索。有的地方理解为离线处理和在线处理

索引阶段(离线)

索引阶段是将文本、图片、音视频等格式的内容进行解析、分割、向量化处理,并最终向量化后的内容存储到向量数据库

「 我的理解是:事实上也并非一定向量化,某些场景可以仅使用精确/关键词搜索,具体还是的看场景,但是一般情况下还是需要的 」

在这里插入图片描述

检索阶段(在线)

检索阶段主要是将用户提问向量化,然后将向量化的提问去向量数据库中进行相似度查询并返回语义相近的信息,然后组将该信息作为上下文发送给大模型。

在这里插入图片描述

Naive RAG 工作流程

Naive RAG 的典型工作流程,引用一篇技术文章中的一张非常好看并且也非常的形象的图,如下所示: 在这里插入图片描述

图来引自:https://ai.plainenglish.io/advanced-rag-part-01-problems-of-naive-rag-7e5f8ebb68d5

  • Indexing(索引):索引是RAG应用环节的第一步也是关键一步,其处理的质量将直接决定RAG应用的性能。

    • 首先对原始数据进行清理和提取,将 PDF、HTML 和 Word 等各种文件格式转换为标准化的纯文本。
    • 其次对文本进行分块,也就是Chunking。
    • 最后对Chunking的块进行向量化处理,并将其存储到向量数据库中。
  • Retrieval(检索):检索方式有多种,关键字检索、语义相似检索以及混合检索方式,在实际的应用场景中根据不同的场景选择不同的检索方式,并不一定非的是语义相似度检索。

    • 首先将用户输入的提示词进行向量化处理,然后在向量数据库中进行相似度搜索,选择TopK数据。
  • Generation(生成):这个没啥可说的,大模型正常处理过程。

    • 根据用户提示词 + 相似上下文 通过提示词模板生成一个增强提示词,发送给LLMs

从整个工作流程上看,实现还是比较简单,但在RAG圈有句名言“一天搭建RAG,一年上不了线”。也从另外一个角度说明想达到生产级别还是相当困难的。

Naive RAG 存在问题

RAG 8个问题

Naive RAG 在索引、检索和内容生成这三个核心步骤中都存在诸多问题,下面将问题一一列举,只有知道了问题才能解决问题在这里插入图片描述

  • Indexing(索引)

    • 信息提取不完整、信息提取难度大(文档格式多),数据清洗质量差等等问题,都会导致RAG应用的失败。
    • 文档分块大小不合理,切分后上下文语义丢失或者包含不完整的内容,没有考虑到一些重要细节。
    • 索引结构未优化,比如索引类型、索引的大小等问题
    • 嵌入模型语义表达能力弱。【后面会介绍在RAG应用落地时如何选择合适的嵌入模型
  • Retrieval(检索)

    • 用户发送的请求表述模糊、不明确或者嵌入模型表达能力弱,导致无法检索到有价值的信息。
    • 外部知识库检索内容与用户提问相关性较低,检索信息的准确率也比较低。
    • 检索召回率低,无法检索到所有相关段落,从而影响了 LLMs 生成全面答案的能力。
    • 当检索到的多个来源信息时,上下文会包含相似信息,会出现信息冗余,从而导致生成的答案中出现重复内容。
    • 没有结合不同类型的检索方法或算法,如关键词、语义和向量检索(keyword, semantic, and vector retrieval)的组合。
    • 将检索到的信息与不同的任务集成可能具有挑战性,有时会导致输出脱节或不连贯。
    • 面对复杂的问题,基于原始查询的单个检索可能不足以获取足够的上下文信息。
  • Generation(生成)

    • 上下文整合不佳、过度依赖检索信息、存在生成错误/不当内容的风险,降低响应的质量和可靠性
    • 生成模型可能过度依赖增强信息,导致输出只是回显检索到的内容,而不添加有洞察力或综合的信息。

RAG 12个痛点

参考文章:12-rag-pain-points-and-proposed-solutions

在这里插入图片描述

痛点序号痛点内容解决方案
痛点 1内容缺失清洗数据 && 精心设计提示词
痛点 2关键文档被遗漏HyDE 和 重排序(排序模型的选择)
痛点 3文档整合长度限制-超LLM窗口大小调整检索策略 & 嵌入模型调优
痛点 4提取困难数据清洗,提示词压缩,长内容优先排序
痛点 5格式错误改进提示词,格式化输出,pydantic program(处理json),大模型的Jsonmode
痛点 6缺乏具体细节先进的检索策略 (从小到大的聚合检索/基于句子窗口/递归式检索)
痛点 7回答不全面查询转换 (路由/查询改写/细分问题/ReAct提示)
痛点 8数据摄取的可扩展性并行处理,提升处理速度
痛点 9结构化数据问答链式思维表格包/混合自洽查询引擎包
痛点 10从复杂 PDF 提取数据嵌入式表格检索技术
痛点 11备用模型策略Neutrino 路由器 (能够处理你提出的各种查询的大语言模型集群)/OpenRouter
痛点 12LLM 安全

其中 7 个来自 Seven Failure Points When Engineering a Retrieval Augmented Generation System 论文。对于一些痛点本人也有些不理解,先列举在此,知道有这个事情,后续慢慢详细研究。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 20
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值